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Abstract

With the fast progress of deep neural networks and
the quick search efficiency of hashing, deep cross-modal
hashing (CMH) methods have obtained more and more
attention. Generally speaking, the existing CMH methods
simultaneously learn hash functions and hash codes in
an end-to-end architecture. However, they mostly focus
on the hash codes generation stage neglected the losing
of rich semantic information in the hash representations
learning stage. Besides, the multi-label constraint is ig-
nored, and the single-label criterion is leveraged. Thus,
we propose a novel Deep Semantic Preserving Attention-
based Hashing (DSPAH) for cross-modal retrieval. In
the DSPAH, we first use a cross-level attention block
to emphasize meaningful parts of hash representations
and oversee unnecessary ones. Moreover, a Fine-Grained
Similarity Criterion (FGSC) is proposed to explore the
multiple semantic of image or text instances, helping to
learn robust and optimal hash codes. Extensive experiment
results on two large-scale public datasets have shown the
competition of our proposed DSPAH.

I.. Introduction

Due to the rapid development of search engines and
social networks, exponential growth can be seen in mul-
timedia data such as images, text, audio, and video. Thus
how to efficiently and effectively retrieve information
across these modalities has become a hot spot called multi-
modal retrieval. To be specific, one may want to obtain
all semantically related instances from the datasets given
in a paragraph. However, due to the discrepancies in dis-
tribution and inconsistent representations among different

modalities, this has raised a significant challenge to unify
the gap effectively and efficiently.

Especially, cross-modal retrieval is the most pervasive
method of multi-modal retrieval, which aims to map
original data (images or text) into similarity, preserving
embedding in a common latent space[1]. In this way,
instances that share similar semantic information may have
shorter distances, dissimilar otherwise. The cross-modal
retrieval methods can be grossly split into two classes.
Traditionally, real-value latent representations is adopted
such as [2], [3], [4], [5]. However, the real value methods
may cause high computational costs and heavy storage
burdens. Thus, another popular method called cross-modal
hashing (CMH) is proposed to save storage and accelerate
the retrieval speed, which leverages Manifold Learning to
generate compact hash codes from original high-dimension
data.

As the Superior performance of deep learning, Deep
Neural Networks (DNN) has shown robust capability
in various applications such as [6], [7], [8]. Thus, the
recent cross nodal hashing methods are all based on
DNN and achieve appealing results. To take advantages
of DNN, many cross-modal hashing methods are pro-
posed including deep cross-modal hashing (DCMH) [9],
self-supervised adversarial hashing (SSAH) [10], self-
constraint and attention-based hashing network (SCAHN)
[11], triplet-based deep hashing (TDH) [12] and multi-
label semantics preserving hashing (MLSPH) [13]. How-
ever, there are still some issues that need to be solved in
the deep CMH community. Firstly, the existing deep CMH
methods use a ’hard’ metric policy to measure the simi-
larity between instances, judged by if two instances share
at least one label. However, the simple approximation has
neglected the fact that most instances in large-scale cross-
modal datasets have multiple labels. Secondly, the hash
representations generation and hash codes projection is the
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equally important part of cross-modal hashing methods.
Furthermore, traditionally, deep CMH methods concentrate
more on the hash codes generation stage. However, hash
representation with less semantic information and spatial
relevance may fail to generate optimal hash codes.

A superior Deep Similarity Preserving and Attention-
based Hashing (DSPAH) is proposed to solve these prob-
lems mentioned above. The framework of DSPAH is
illustrated in which corporately learns hash representa-
tions and binary codes in an end-to-end architecture. The
DSPAH consists of two main components in the hash
representations generation stage. CNN model is leveraged
to learn rich semantic information from image-modality
and text-modality. Moreover, the CNN model is followed
by a cross-level attention level where multi-level hash rep-
resentations are concatenated together as the input. Thus
the context relationship and informative information can
be obtained by the final hash representations. Moreover,
to take advantage of multi-label information. A novel dice
formula is proposed to build similarity matrixs, which can
better explore the fine-grained relationship among multiple
labels.

The core contributions of DSPAH are listed as follows:
• Firstly, an cross-level attention block is proposed

to explore intensive semantic information. In this
module, hash representations generated from multi-
level are concatenated and further integrated by the
bi-attention module, which explores the context cor-
relation and global dependence from both channel and
spatial view.

• Secondly, a dice formula is proposed to effectively
obtain the multi-label information constraint, further
generating robust hash codes.

• Finally, the DSPAH is applied on two large-scale
cross-modal datasets, and the experimental results
illustrate the superiority of our proposed DSPAH
compared with other state-of-the-art methods.

II.. Proposed Method

A.. Problem Defination

We use GT denotes the transpose of G and ‖·‖F denotes
the Frobenius norm. The sign(·) is an element-wise sign
function defined as follows:

sign(x) =

{
1 x ≥ 0
−1 x < 0

(1)

We use O = {oi}Ni=1 to denote the training-set with
N instances which are image-text data labeled at least
one tag. The proposed DSPAH can be expanded to all
kinds of modality (e.g. image, text, audio and video)

and we mainly concentrate on image-modality and text-
modality in this paper. Thus we use oi = (vi, ti, li) to
denote the ith training instance, vi ∈ Rdv , ti ∈ Rdt

and li ∈ Rdl are image, text and label feature vector
with dimension dv , dt and dl. Moreover, the fine-grained
similarity matrix is defined as S = {Svt, Svv, Stt},
where Svv =

{
Svvij | i, j = 1, 2, . . . , N

}
∈ RN×N and

Stt =
{
Sttij | i, j = 1, 2, . . . , N

}
∈ RN×N denotes the

intra-modality similarity matrix of image and text, Svt ={
Svtij | i, j = 1, 2, . . . , N

}
∈ RN×N denotes the inter-

modality similarity matrix between image and text.
The most important task of our proposed DSPAH is

learning two discriminative hash functions h(v)(v) and
h(t)(t) for image-modality and text-modality using the
training-set O and similarity matrix S. In the hash rep-
resentations generation stage, hash representations learned
from image-modality and text-modality are represented
by F = {fvi | i = 1, 2, · · · , N} ∈ RN×c and G =
{gti | i = 1, 2, · · · , N} ∈ RN×c. In hash codes projection
stage, B = {Bi | i = 1, 2, · · · , N} ∈ RN×c denotes the
final hash codes from F and G by simply using a sign
function B = sign(F +G).

B.. Network Architecture of DSPAH

The overview architecture of DSPAH is illustrated in
Fig. 1, which consists of the multi-level hash represen-
tations generation and attention-based interaction module.

Speaking of multiple-level hash representations genera-
tion, both the image-network and text-network use Resnet
as the bone-network because of its remarkable performance
on computer vision applications. Especially, the original
text data is represented as Bag-of-Words (BoW) vectors
and fused into multi-scale BoW representations. To be
specific, a multi-scale pooling policy is conducted on the
BoW vectors to explore global features, and these vectors
are resized into the same length. Furthermore, to facilitate
the Resnet[14], these vectors are stacked together to make
up a matrix. Therefore, the rich semantics context in text-
modality is further explored. For both image-modality and
text-modality, we propose cross-level attention to capture
the context relationship and global dependency. To be
specific, the hash representations from intermediate lay-
ers are generated by global average pooling (GAP) and
convolution layer with a kernel size of 1 × 1. The novel
CBAM [15] is leveraged to capture the context relationship
and global dependency in intermediate layers. Finally, all
of these hash representations are weighted together as
the final hash representations by multiplying the adaptive
attention matrix. Therefore, the final hash representations
can fully obtain the semantic information.
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Fig. 1. The overview architecture of our proposed DSPAH consists of two parts: (1) multi-level hash
representations generation: the networks are divided into several blocks which are weighted by
CBAM attention, and then the multi-level hash representations are multiplied by an adaptive attention
matrix. Finally, these multiple layers are concatenated together as the final hash representations. (2)
multi-label similarity preserving loss.

C.. Hash Function Learning

In large-scale cross-modal datasets, multi-labels for a
single instance(e.g., image and text) are quite common.
However, most previous cross-modal retrieval methods
measure the similarity by only one shared label, neglect-
ing the fine-grained similarity among instances. Thus,
we propose a new similarity measurement policy called
Fine-Grained Similarity Criterion (FGSC) to explore the
semantic relationship among instances better. The FGSC
of inter-modality can be defined as follows:

Svtij =
lvi ∩ ltj√
lvi × ltj

(2)

where lvi denotes the label vector of ith image instance
and ltj denotes the label vector of jth text instance. lvi ∩ ltj
denotes the number of shared labels of vectors ith and
text.

√
lvi × ltj is the geometric mean of these two label

vectors. Similarly, the FGSCs of intra-modality instances

are defined as follows:

Svvij =
lvi ∩ lvj√
lvi × lvj

(3)

Sttij =
lti ∩ ltj√
lti × ltj

(4)

where Svvij denotes the similarity across image-modality
and Sttij denotes the similarity across text-modality. Be-
sides, S = {Svt, Svv, Stt} ∈ (0, 1). Thus, the hamming-
based loss function is no longer suitable for the continuous
similarity value. In this paper, the Mean Square Error
(MSE) based loss function is adopted to fit the FGSC.
Following the common protocol proposed in DCMH, the
inner product < ∗, ∗ >, ∗ ∈ (f, g) are leveraged to measure
the semantic similarity of hash representations. Therefore,
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the MSE loss can be defined as follows:

Linter =

n∑
i=1,j=1

∥∥∥∥ 〈fi, gj〉+ c

2
− svtij · c

∥∥∥∥2
Lintra-image =

n∑
i=1,j=1

∥∥∥∥ 〈fi, fj〉+ c

2
− svvij · c

∥∥∥∥2
Lintra-text =

n∑
i=1,j=1

∥∥∥∥ 〈gi, gj〉+ c

2
− sttij · c

∥∥∥∥2
(5)

where fi and gj are used to denote the hash represen-
tations of the ith image instance and jth text instance.
c is the length of hash codes. Since the inner product
〈∗, ∗〉 ∈ [−c, c], the value range of 〈∗,∗〉+c2 will be the
same as s∗∗ijr · c.

The purpose of FGSC-based MSE loss is to generate
modal-specific and discriminative hash representations G
and F . However, there is a gap between the hash codes and
hash representations. Moreover, during the learning proce-
dure of FGSCC-based MSE loss, the similarity between
B(v) = sign(F ) and B(t) = sign(g) has been ignored.
Since the aim of CMH methods is to learn high-quality
hash functions and hash codes, we also need to keep the
semantic similarity of B(v) and B(t). Another constraint
B(v) = B(t) = B is added to keep the modal invariance.
Accordingly, the quantization loss is defined as follows:

Lq =
1

c

(
‖B − F‖2F + ‖B −G‖2F

)
(6)

III.. Optimization

By assembling the above loss functions, the final overall
loss function is given as follows:

min
B,θx,θy

L =Linter + Lintra−image + Lintra−text + Lq
(7)

where θx, θy denote the network parameters of the image-
modality and text-modality. An alternating optimization
strategy is employed to optimize equation 7. Some pa-
rameters will be optimized while others are fixed. The
whole optimization algorithm for DSPAH is outlined in
Algorithm 1.

IV.. Experiment and Discussion

This section evaluates the proposed DSPAH on two
large-scale public datasets, MIRFlickr-25K [16], and NUS-
WIDE [17] compared with other state-of-the-art methods.

A.. Datasets

MIRFLICKR-25K [16] is a standard benchmark which
contains 25,000 image-text pairs collected from Flickr

Algorithm 1: Optimization algorithm of DSPAH.

Input: Training set {vi, ti, li}Ni=1, intra-modality
and inter-modality similarity matrix
Svv, Stt, svt;

Output: Optimized parameters θx and θy of
neural networks and binary codes B;

1 Initialization: Initialize the parameters of neural
networks, the batch size is set to nx = ny = 128,
initialize hash representations of each modality: F
and G, set iteration number iter and other
hyper-parameters.

2 for t=1 to iter do
3 Update the parameter θx of image-network by

BP algorithm:

∂L
∂fik

=
∑
j∈N

(
fTi fj + q − 2 · svvij · q

)
· fjk

+
∑
j∈N

(
fTi gj + q − 2 · svtij · q

)
· fjk

+
2

c
(F −B)

Update the parameter θy of text-network by
BP algorithm:

∂L
∂gik

=
∑
j∈N

(
gTi gj + q − 2 · sttij · q

)
· gjk

+
∑
j∈N

(
fTi gj + q − 2 · svtij · q

)
· gjk

+
2

c
(G−B)

4 end
5 Update binary codes B

B = sign(β(F +G))

Until a fixed number of iterations or convergence;

website of different group. Each image is related to several
textual descriptions. 20,015 instances of image-text pair
with at least one of twenty-four labels are selected, which
is similar to DCMH[9]. The text-modality instances are
transferred into 1,386-dimensional BoW vectors.

NUS-WIDE [17] The NUS-WIDE includes 268,468
image-text pairs which all belong to 81 categories. A
1,000-dimensional BoW vector is generated for each text-
modality instance. In this paper, 190,421 image-text pairs
with 21 most common labels have remained, and all
instances without supervised information are removed.

We use 10,000 and 10,500 image-text pairs in
MIRFLICKR-25K and NUS-WIDE for training. Besides,
we stochastically choose 2,000 and 2,100 instances for the
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query items, and the remained are treated as the retrieval
items.

B.. Implementation Details

The DSPAH is conducted on a server with one Nvidia
Xp GPU, and the code is written by Pytorch[18] frame-
work. The Resnet-34 with four blocks is utilized to learn
rich hash representations. For the image network, the
parameters are initialized by the pre-trained model on
ImageNet[19]. In terms of the text network, the Normal
distribution with N

(
µ, σ2

)
with µ = 0 and σ = 0.1 is

leveraged to initialize the parameters. Moreover, pooling
sizes from 1 to 50 of BoW vectors are implemented to
construct the multi-scale text matrix. We use the SGD as
the optimization, and the learning rate is set to 10−1.5 with
a mini-batch size of 128.

C.. Evaluation and Baselines

To compare the DSPAH with other state-of-the-art
methods, we adopt the Mean Average Precision (MAP)
and PR Curves to measure the hamming ranking and
hash lookup. Several baseline methods are compared with
DSPAH including CMSSH [20], SCM [21], GSPH [22],
DCMH [9], CMHH [23], PRDH [24], CHN [25], SepH
[26] and SSAH [10]. The MAP results is illustrated in
Table I and the PR Curves is demonstrated in . From the
results, we can get the following observation.

• The DSPAH significantly outperforms other state-of-
the-art methods on 16, 32, 64 bits of hash codes in
terms of MAP and PR Curves, which clearly shows its
superiority. The advance of DSPAH is partly because
the cross-level attention dramatically improves the
hash representations of interest to concentrate on the
vital part and ignore the unconsidered ones.

• The SSAH and DSPAH surpass other deep
architecture-based CMH methods and show
competitive results, which indicates the importance
of preserving multiple semantic labels. The FGSC
we proposed in this paper may have the ability to
unify the inter-and intra-modality heterogeneity.

• Deep CMH methods such as DCMH, CMHH, SSAH,
CHN, and PRDH distinctly attain better performance
than other shadow-based CMH methods, including
CMSSH, GSPH, SCM, and SePH. This reveals the
robust and advanced character of deep neural net-
works, obtaining richer semantic information than the
hand-crafted features. Therefore, better results can be
observed.

V.. Conclusion

In this paper, cross-level attention and a Fine-Grained
Similarity Criterion (FGSC) are proposed, with the vision
of learning context-relevant hash representations and gen-
erating optimal hash codes. Besides, the leveraged atten-
tion mechanism can better enhance the ability to focus on
the image’s and text’s ’right’ area. Evaluations conducted
on two datasets demonstrate the significant performance
of DSPAH compared with other CMH methods. In the
future, we are going to use different metrics to investigate
the similarity of embeddings.
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