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A B S T R A C T   

Frequency response analysis (FRA) has been accepted as a widely used tool for the power industry. The inter-
pretation of FRA can be achieved by the conventional mathematical indicators-based method, which is mostly 
used in the past. The newly developing artificial intelligence (AI)-based method also provides an alternative 
interpretation. However, in most reported AI techniques, the features of FRA signatures are directly input into 
the AI model to obtain the classification results. Few studies have concentrated on the separability of winding 
deformation faults. In this context, a spectral clustering algorithm is studied to aid in FRA interpretation. The 
electrical model simulation and experimental tests are performed. The FRA data processing results verify the 
feasibility, effectiveness and superiority of the proposed method.   

1. Introduction 

As the heart of a substation, the power transformer functions as the 
significant link of voltage conversion and energy delivery [1]. When 
transformers are out of service due to significant faults, electricity asset 
holders will lose millions of dollars; furthermore, a substantial amount 
of manpower and financial resources are required for transformer 
maintenance, which further reduce their economic benefits. Trans-
former faults are divided into external and internal faults [2]. Among 
internal faults, the active part mechanical faults of a transformer are 
more significant [3]. These faults include winding displacement or 
deformation, bending, tilting, bucking, spiraling, transformer core faults 
and faults related the load tap changer [4]. Among them, winding 
deformation fault do great harm to the normal operation of transformer, 
and it is of significance to detect and diagnose it in the early stage. 

Recently, a variety of winding deformation fault detection methods 
has been successively proposed. The main methods include the vibration 
method [5], the ultra-wideband (UWB) antenna method [6], short cir-
cuit impedance (SCI) [7], low voltage impulse (LVI) [8], the voltage- 
current Locus diagram [9] and the frequency response analysis (FRA) 
method [10]. Some of these approaches are offline methods, which are 
successfully adopted in the field [7,8,10], while some online methods 
are still in the developmental stage [5,6,9]. Among the above methods, 

FRA has proven to be a reliable, simple, fast, economic and non- 
destructive diagnostic tool [10], which is widely accepted. In FRA, the 
transformer frequency response signatures with frequency bands of 20 
Hz ~ 2 MHz are often used for analysis, and information about the 
winding mechanical structure can be observed in this wide frequency 
band. At present, FRA has already been commercialized. Chinese power 
industry standards [11] and IEC standards [12] have been successively 
proposed to standardize the technique. 

FRA is considered to be a comparative method. Time-based com-
parison, construction-based comparison and type-based comparison 
methods have been developed. The measured FRA signature is 
compared with its “fingerprint”, sometimes the data of the other phases 
or the data of the sister unit, to analyze potential failures. The “finger-
print” is the measured FRA signature when the transformer has a healthy 
status. Besides, the time-based comparison method is more reliable. 
Currently, the accurate interpretation of FRA data still remains a chal-
lenge. The current FRA interpretation technique mostly depends on vi-
sual inspection [13]. The FRA signatures are divided into low-frequency, 
mid-frequency and high-frequency bands, and the observations are 
performed over each frequency band. This technique calls for experi-
enced personnel and prior knowledge about the impact of transformer 
variable winding faults on each frequency range, which is likely to cause 
false positives and false negatives. To obtain a more reliable FRA 
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interpretation code, considerable research efforts have been carried out, 
and these works can be divided into two categories: 

1) Conventional FRA interpretation method 
The main interpretation code is mainly based on mathematical sta-

tistical indicators. Since the last decade when FRA was introduced, many 
statistical indicators have been proposed, including the correlation co-
efficient (CC), the absolute sum of logarithmic error (ASLE), and the 
standard deviation (SD), etc. The statistical indicators are computed and 
extracted from two FRA traces to evaluate the winding faults by 
comparing the indicator value with the threshold value. For instance, 
the relative factors of two FRA traces of 1–100 kHz, 100–600 kHz and 
600–1000 kHz are recommended in the Chinese standard DL/T 911 
[11]. E. Rahimpour comprehensively compared frequency and ampli-
tude deviation, standardized difference area, weight function and other 
indexes to evaluate winding radial, axial and inter-turn faults [14]. IEC 
60076-18 and IEEE C57.149-2012 also recommend the use of some 
other indicators [12]. The recently used statistical indicators were 
summarized by Samimi [15–16]. Besides, there is an FRA interpretation 
method based on transformer electric circuits [17–18]. However, the 
statistical indicator method has room for improvement; moreover, the 
method based on the electric circuit calls for modeling the winding at 
the initial stage, which is always a complexity. 

2) Advanced artificial intelligent FRA interpretation method 
Some researchers have turned to artificial intelligence (AI) [19]. M. 

Bigdeli applied a support vector machine (SVM) algorithm to classify 
winding faults, in which the frequency-amplitude and the poles of 
transfer function (TF) were used [20]. Furthermore, [21] improved the 
classifying performance by combining a genetic algorithm (GA) and a 
particle swarm optimization (PSO) algorithm with an SVM, and this 
method was successfully verified on an actual model transformer. In 
addition, artificial neural networks (ANN) have also been applied for 
transformer winding fault detection. In [22], a novel intelligent diag-
nosis method was proposed to diagnose winding inter-disk fault, in 
which all the frequencies of the FRA trace are used for model 
construction. 

In most of above AI techniques, the features of FRA signatures are 
directly input into the AI model, and the classification results of winding 
faults are obtained. The authors suggest that few studies have concen-
trated on the separability of winding deformation faults. In this context, 
the purpose of this study is not to train an AI model for fault classifi-
cation from the perspective of supervised learning; instead, the clus-
tering analysis is applied to aid in FRA interpretation. However, 
conventional clustering techniques, such as K-means, are more suitable 
for convex sets, while the dimensions of FRA features can be high, and 
the distribution of these feature sets may not be convex. Hence, another 
AI algorithm spectral clustering is introduced in this paper, and it is not 
sensitive to the distribution shape of a dataset, and can solve very 
general problems like intertwined spirals [23]. 

2. Theoretical analysis 

2.1. Mathematical principle of spectral clustering algorithm 

From the perspective of graph theory, spectral clustering can be 
regarded as a graph segmentation problem. Given a graph G = (V, E), 
vertex set V represents the samples, and the weighted edge E represents 
the similarity between the samples. The aim of spectral clustering is to 
find a reasonable method for dividing graphs [24–25]. 

Let A1,⋯,Ak be the subsets of a graph. To minimize the cut value of 
segmentation, the spectral clustering minimizes the original objective 
function [20], 

cut(A1,⋯,Ak) =
1
2
∑k

i=1
W(Ai,Ai) (1)  

where k is the number of groups into which the samples are divided, Ai is 

the ith group, Ai is the complementary set of Ai, and W(Ai,Ai) is the sum 
of the weights of all edges between group Aiand Ai. 

The objective function of the spectral clustering algorithm is closely 
related to the Laplace matrix [23–24]. The divide criteria of different 
spectral clustering algorithms are diverse, and among the criterion, NJW 
(Ng-Jordan-Weiss) is the classical spectral clustering algorithm, which 
can be divided into the following steps: 

1) Construct a similarity matrix 
In spectral clustering, each sample point can be regarded as the 

vertex set of an undirected graph. The similarity of sample points is the 
edge of the undirected graph. The similarity matrix W is constructed by 
the weight of the edges, in which, W can be constructed through the 
methods of full connection, nearest neighbor, etc. [23]. The common 
Gauss kernel function is used to construct W in this study, as shown in 
Equation (2), 

Wi,j = exp(−
||xi − xj||

2

2σ2 ) (2)  

where xi and xj are two sample points, σ is the parameter of the Gauss 
function, and |||| is the Euclidean paradigm. 

2) Construct a Laplace matrix 
The Degree matrix D is computed based on similarity matrix W. 

Further, the Laplace matrix is then constructed based on the degree 
matrix D. There exist three common methods: 1) construct the non- 
normalized Laplace matrix L of the undirected graph; 2) construct the 
normalized Laplace matrix Lrm, which is closely related to the random 
walk theory; 3) construct the normalized Laplace matrix Lsym. The third 
method, which is most commonly used, is adopted in this study, as 
shown in Eq. (3), 

Lsym = D1
2WD1

2 (3)  

where D is the degree matrix of an undirectional graph. 
3) Clustering analysis 
Compute the set of eigenvectors corresponding to the first k eigen-

values of Lsym, and construct feature vector space S of the sample data, 

S = [υ1, υ2, ...υk] (4)  

where υ1, υ2, ...υk are the k eigenvectors, corresponding to the first k 
eigenvalues in descending order. 

Finally, the data points of feature vector space S are clustered by the 
K-means method, and the clustering result is mapped to the original 
sample space. 

2.2. Analysis procedure based on the clustering algorithm 

The FRA analysis procedure based on the spectral clustering 

Fig. 1. Analysis procedure based on clustering analysis.  
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algorithm is shown in Fig. 1. The numbers of original FRA data with 
variable fault types, locations and degrees are collected, including 
simulation and experimental data. Due to FRA is a comparative method, 
some statistical indices can be calculated from FRA and its fingerprint to 
characterize the information of corresponding winding fault. These 
statistical indices, as the FRA statistical features, can be then input to the 
AI algorithm. In this study, several FRA statistical features are calculated 
within three sub-frequency bands, namely, 1–100 kHz, 100–600 kHz 
and 600–1000 kHz. More details about these features are introduced in 
Section III. Besides, to eliminate the influence of dimensions presented 
by different statistical features, a pre-processing is applied for feature 
standardization to obtain the samples. Then, the samples are processed 
by the spectral clustering algorithms. Finally, the clustering result is 
obtained, and the characteristic of FRA that winding deformation fault 
presents are analyzed. 

3. Calculation of the fra statistical features and pre-processing 

3.1. Calculation of the FRA statistical features 

At present, many mathematical statistical indicators are calculated 
based on the measured FRA signatures and fingerprint [16]. The com-
mon statistical indicators can be divided into two categories: indicators 
based on the frequency and amplitude of the resonant points in the FRA 
signature and indicators based on all the data points of the FRA signa-
ture [26–27]. The accurate extraction of the resonant frequency and 
amplitude is required when the first indicators are calculated, and thus, 
these indicators are more easily influenced by the noise of FRA and the 
extraction algorithm [13]. The second indicators are simple, easily 
calculated, and less affected by noise. In this study, the second statistical 
indicators are calculated within the three sub-frequency bands to extract 

statistical features. The selected indicators include the Euclidean dis-
tance, sum squared ratio error, spectrum deviation, absolute sum of 
logarithmic error, correlation coefficient, normalized correlation coef-
ficient, absolute difference, expectation, minimum–maximum ratio and 
standard deviation [1,10–11,13–14,22]. The abbreviation and calcula-
tion methods of these indicators can be found in Table 1. 

3.2. Pre-processing of the statistical features 

Different statistical features have different dimensions and units, 
which will have a significant impact on the results of clustering analysis 
if these features are directly input to the clustering algorithm. The input 
statistical features are pre-processed by a standardization method to 
eliminate the effect of dimensions. 

The different fault types of transformer winding deformation will 
have significant impact on the different frequency bands of the FRA 
signature. Moreover, the FRA signature is mostly analyzed in the low-, 
mid-, and high- frequency band, respectively. Therefore, the FRA sta-
tistical feature dataset cannot be simply normalized by columns or rows 
because for a certain statistical indicator, this scheme will change the 
relative relation between the indicator values of different sub-frequency 
bands and cannot reflect the implied information of an FRA signature. 

In this study, continuous three columns of dataset, namely a specific 
statistical indicator, are normalized. As shown in Table 2, indicators ED 
and CC are taken as examples for the feature construction. L indicates 
low frequency band, M indicates middle frequency band, H indicates 
high frequency band, and No. indicates the number of sample. If a sta-
tistical indicator is definitely smaller than 1, the value of this indicator in 
each sub-frequency band remains unchanged, for instance, the in-
dicators CC and MM; if a statistical indicator is probably>1, this sta-
tistical indicator is normalized by the maximum value among the three 

Table 1 
Abbreviation and calculation equations of FRA statistical indicators.  

Abbreviation Definition Equations 

ED Euclidean Distance [10] ED =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1((Y(i) − X(i))2
√

SSRE Sum Squared Ratio Error [1] 
SSRE =

1
N
∑N

i=1
(
Y(i)
X(i)

− 1)2    

δ Spectrum deviation [10] 
δ =

1
N
∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
X(i) − (Y(i) + X(i))/2

(Y(i) + X(i))/2
)
2
+ (

Y(i) − (Y(i) + X(i))/2
(Y(i) + X(i))/2

)
2

√

ASLE Absolute Sum of Logarithmic Error [14] 
ALSE =

∑N
i=120log10Y(i) − 20log10X(i)

N    
cc Correlation Coefficient [10] 

cc =

∑N
i=1X(i)Y(i)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 [X(i)]
2∑N

i=1 [Y(i)]
2

√

ρ Normalized correlation coefficient [11] 
ρ =

∑N
i=1

X∗(i)Y∗(i)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N

i=1
[X∗(i)]2

∑N
i=1

[Y∗(i)]2
√

X*(i) = |X(i)| −
1
N
∑N

i=1
X(i)

Y*(i) = |Y(i)| −
1
N
∑N

i=1
Y(i)

DABS Absolute difference [14] 
DABS =

∑N
i=1|Y(i) − X(i)|

N    
E Expectation [10] E =

1
N
∑N

i=1
Δ(i)

Δ(i) =
|Y(i) − X(i)|
1
N
∑N

i=1
|X(i)|

MM Minimum-Maximum ratio [22] 
MM =

∑N
i=1min(Y(i),X(i))

∑N
i=1max(Y(i),X(i))

SD Standard Deviation [13,14] 
SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1((Y(i) − X(i))2

N − 1

√

“X(i)” and “Y(i)” are the ith amplitude elements of the fingerprint and measured FRA signature, respectively. 
N is the number of elements within the frequency range. 
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sub-frequency bands. The calculation equation is as follows in Equation 
(5). Most indicators, such as the indicator ED, SD and ASLE, belong to the 
second type. 

Zi =
Yi

YLMH
=

Yi

|Yi|max
(5)  

where Yi is the value of a certain statistical indicator in a certain sub- 
frequency band, YLMH is the absolute maximum value of this statistical 
indicator in the three sub-frequency bands, and Zi is the normalized 
value. 

4. Analysis based on simulation of the lumped parameter 
equivalent electrical model of transformer winding 

Flow Chart of the Electrical Circuit Simulation 
The mass FRA signature data of field tests are difficult to collect. 

Thus, the characteristic of winding deformation can be analyzed by 
advanced modeling techniques. The finite element method (FEM) is 
used to simulate transformer winding behaviors in this study. Typical 
winding deformation faults include radial deformation (RD), axial 
displacement (AD), inter-disk short circuit (SC) and disk space variation 
(DSV) fault. A large number of FRA data of these typical winding faults 
are obtained and analyzed by the spectral clustering algorithm. The flow 
chart of electrical circuit simulation is shown in Fig. 2. 

4.1. FEM and electrical model of the transformer 

An 11.55/0.412 kV, 10 kVA transformer is used for simulation, and 
the dimension parameters of the transformer are shown in Table 3. The 
windings are designed in rectangular shape, where the HV winding 
comprises 6 disks with 1134 turns per disk, while the LV winding is a 
continuous layer of 140 turns. The winding connection type is Dyn1. 
Fig. 3 shows an image of the actual transformer and the corresponding 

FEM model. 
The equivalent electrical parameters of the transformer in healthy 

status are calculated by FEM simulation. The lumped parameter elec-
trical circuit is presented in Fig. 4. The definition of each parameter can 
be found in [4]. The electrical parameters of equivalent model are 
shown in Table 4. 

4.2. Simulated FRA signatures of various winding faults 

The winding RD is simulated by FEM on the HV winding, the winding 
free buckling with different fault degrees are emulated on HV5 disk 
(seen from top to bottom), and the fault degree is defined by the ratio of 
the radial deformed part to the diameter of winding. Fig. 5 shows some 
deformed windings. 

The variable winding RD faults are simulated, the fault degree varies 
from 1.2% to 37%, and there are 30 groups of faults. The FEM simulation 
results reveal that the winding RD mainly induces variations in the 
parameter Cgh and Lsh of the HV winding, which corresponds to the 
deformed disk; further, the variation in Chl between the deformed HV 
winding and the LV winding is also significant. 

In addition, the winding AD fault is also simulated by the FEM 
method, and this fault is emulated on HV1 ~ HV6 windings. The fault 
degree is defined as the ratio of the AD offset to the height of HV 
winding. Fig. 6 shows some typical deformed windings. 

The variable winding AD faults are simulated by a parameter sweep, 
the fault degree varies from 0.04% to 4%, the interval of the fault de-
grees is set to be equal, and there are 90 groups of faults. The FEM 
simulation results show that this type of fault mainly induces variations 
in Chl and Khl between the HV winding and the corresponding LV 
winding. Impacts of winding RD and AD faults on equivalent electrical 
parameters are shown in Fig. 7. 

According to the calculated electrical parameters, the FRA signatures 
of faulty winding with different fault types, degrees and locations can be 
simulated based on the electrical circuit. The faults are set in the top 
(HV1 disk), middle (HV3 disk) and bottom (HV6 disk) of transformer HV 
winding to simulate different fault locations. The end to end open circuit 
FRA signatures of faulty winding are obtained. 

First, the winding RD faults are simulated. In each fault location, 
there are 30 groups of different fault degrees. The total number of RD 
groups is 90. Second, the winding AD faults are simulated on HV 
winding, and a total of 90 groups of FRA are obtained. In addition, the 
winding inter-disk SC fault is simulated by shortening two basic units of 
the electrical model with a variable resistance, to simulate insulation 
failures with different fault degrees. There are 30 groups of inter-disk SC 
faults on the top, middle and bottom of the HV winding, respectively. 
Moreover, the winding DSV fault is simulated in this study. As described 
in [13], a capacitor with variable capacitance is paralleled with two 
basic units of electrical model to simulate the DSV fault, with different 
fault degrees and locations. There are 30 groups of DSV faults on the top, 
middle and bottom, respectively. Due to space limitation of the paper, Fig. 2. Flow chart of the electrical circuit simulation.  

Table 3 
Design specifications of specifically manufactured transformer.  

Location Parameter Value/mm 

HV winding Length of external diameter 200 
Width of external diameter 162 
Length of internal diameter 168 
Width of internal diameter 130 
Height 468 

LV winding Length of external diameter 108 
Width of external diameter 108 
Length of internal diameter 100 
Height 468 

Core Length of core section 92 
Width of core section 92 
Length of core 710 
Height of core 680  

Table 2 
Examples of feature construction(ED and CC).  

Statistical indicators ED CC 

Frequency ranges 
(kHz) 

<100 100–600 >600 <100 100–600 >600 

No.1 ED1L ED1M ED1H CC1L CC1M CC1H 

No.2 ED2L ED2M ED2H CC2L CC2M CC2H 

… … … … … … … 
No.n EDnL EDnM EDnH CCnL CCnM CCnH  

Z. Zhao et al.                                                                                                                                                                                                                                    



International Journal of Electrical Power and Energy Systems 130 (2021) 106933

5

partial fault FRA signatures are shown in Fig. 8. It is noted that the os-
cillations in the frequency range below about 0.05 MHz are also the part 
of FRA resonances and anti-resonances. 

4.3. Clustering analysis of the simulated FRA signatures 

A total of 360 groups of FRA data with four fault types are obtained, 
as described in section III, the statistical features are calculated and 
standardized, and input to the spectral clustering algorithm. The feature 
data are a 360*30 matrix. 30 are the numbers of features, which is 
calculated from 10 statistical indices in three sub-frequency bands. The 
MATLAB visualization tool t-SNE (t-Distributed Stochastic Neighbor 

Embedding, t-SNE) is used to visualize the high dimensional data. A 
visualization of the clustering result of input statistical features without 
fault type information is shown in Fig. 9. By contrast, the distribution of 
original labels for four fault types is shown in Fig. 10. The following 
analysis can be derived: 

1) The clustering result of the simulated FRA features by the spectral 
clustering algorithm is consistent with the distribution of the original 
labels of FRA features, which demonstrates the feasibility of spectral 
clustering algorithm on processing transformer FRA data. 

2) By comparing Fig. 9 with Fig. 10, the clustering result of “1′′ is the 
SC fault, the clustering result of “2” is the AD fault, the clustering result 
of “3” is the DSV fault, and the clustering result of “4” is the RD fault. 
Different winding fault types fall into different clusters, which indicate 
the separability of four winding deformation fault types. 

3) There are three specific branches for both DSV and RD faults, 
which correspond to the location setup of faults, namely, the top, middle 
and bottom of HV windings. Moreover, in each branch, the distribution 
of faulty FRA data can be observed, which corresponds to the degree 
setup of two faults. 

Fig. 3. Image of actual transformer and corresponding FEM model. (a) image of actual transformer, (b) FEM model.  

Fig. 4. Equivalent lumped parameter electrical circuit of the transformer.  

Table 4 
Equivalent electrical parameters of model transformer winding.   

Cg Cs CHL Ls KHL Kij 

HV winding 9 pF 45.2 pF 58.2 pF 254.7 mH  0.513  0.327 
LV winding 49.7 pF 10.3 pF 58.2 pF 1.79 mH  0.513  0.219  
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4) In AD fault simulation, all faults are produced on the HV winding 
and arranged in the axial direction, and no fault location setup is 
applied. Thus, there is only one branch for the winding AD fault clus-
tering result. In addition, the distribution of AD clustering result is 
similar to those of DSV and RD faults, due to the successive fault degree 
setup. 

5) In the clustering result of the SC fault, three clusters can be 
observed, which correspond to the location setup of this fault. Within 
each cluster, the fault data show an “annulus” distribution. 

6) It can be concluded that the fault degree of the winding DSV, AD 
and RD faults can be distinguished based on the clustering analysis, 
which shows the separability of these fault degrees. Whereas it is diffi-
cult to recognize the degree of the winding SC faults, which might be due 
to the impact of this fault on electrical parameters is not linear. 

7) Besides, the fault locations are setup in the top, middle and bottom 
of HV winding in equivalent electrical circuit of Fig. 4, the locations of 
the winding DSV, RD and SC faults are separable based on the phe-
nomenon that each fault location shows a specific branch or cluster. 
However, it should be further discussed and verified for the situation 
that the fault is set between the two locations mentioned above. 

5. Evaluation of clustering result validity 

5.1. Evaluation index of clustering quality 

The evaluation indexes of clustering quality can be divided into 
external and internal indexes. In the external index, the clustering al-
gorithm is used to process datasets with clear category labels, and these 
indexes are then used to calculate the accuracy of the clustering result. 
The internal indexes are the predefined evaluation criteria, which are 
normally used to describe the inherent characteristics of the obtained 
clusters. 

The common external evaluation indexes include RI (Rand index), 
ARI (adjust Rand index) and FMI (Fowlkes-Mallows index). Besides, in 
this study, the DBI (Davies-Bouldin index) is selected as the internal 
evaluation index. The definitions of these indexes can be found in [23]. 

The RI, which varies from 0 to 1, calculates the similarity between 
the clustering result and the actual labels. The larger the RI is, the more 
consistent the clustering result is with the actual situation. The value of 
the ARI also varies from 0 to 1, and the closer the value is to 1, the more 
satisfactory the quality of the clustering result is. The FMI is defined as 
the geometric mean of the pairwise precision and the recall, and the 
value is 0–1. Larger FMI indicator values indicate that the obtained 
clusters are closer to the standard clusters. The DBI is defined as the sum 
of the average distance between the samples of two clusters Ci and Cj 
divided by the distance between the center points μ of the two clusters. 
The smaller the DBI value is, the better the performance of the clustering 
result is. 

Fig. 5. Some radially deformed winding models with different fault degrees. 
(a) 5%, (b) 9.3%, (c) 15.4%, (d) 21.6%. 

Fig. 6. Some winding models of AD with different fault degrees. (a) 1.1%, (b) 2.2%, (c) 3.3%.  
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5.2. Robustness and global optimization ability index of the clustering 
algorithm 

Suppose a specific evaluation index F, which can be an external or 
internal indicator, is selected. The same data are tested m times by the 
same clustering algorithm. The global optimization ability of the clus-
tering algorithm determines if the clustering results are stable at a high 

level, according to the following equation: 

Fmean =
1
m

∑m

i=1
Fi (6)  

where Fi is the evaluation index of the ith clustering test, and Fmean is the 
mean value. 

The robustness of the clustering algorithm can be defined as the 

Fig. 7. Impacts of winding RD and AD faults on equivalent electrical parameters. (a) RD fault, (b) AD fault.  

0.0 0.2 0.4 0.6 0.8 1.0

-90

-80

-70

-60

-50

-40

-30

G
ai

n/
dB

Frequency/MHz
0.0 0.2 0.4 0.6 0.8 1.0

-90

-80

-70

-60

-50

-40

G
ai

n/
dB

Frequency/MHz
a                          b 

c                          d 

0.0 0.2 0.4 0.6 0.8 1.0
-100

-90

-80

-70

-60

-50

-40

-30

G
ai

n/
dB

Frequency/MHz

Fig. 8. Typical fault FRA signatures of HV phase-A winding based on FEM simulation. (a) RD faults on the top, (b) RD faults on the middle, (c) AD faults, (d) DSV 
faults on the top. 
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similarity degree of the clustering results, in which the same data are 
processed by the same algorithm several times. The robustness index is 
as follows: 

Fva =
∑m

i=1
‖Fi - Fmean‖

2 (7)  

where Fva is the variance of the clustering results for m times. 
In general, the larger the Fmean is and the smaller the FVA is, the better 

the global optimization ability and robustness of the clustering algo-
rithm are. 

5.3. Comparison with other conventional clustering algorithms 

To verify the applicability of spectral clustering method on pro-
cessing FRA data, other common clustering algorithms, including the K- 
means, FCM (Fuzzy C-Means), hierarchical clustering and Gauss 

clustering, are also used to process the transformer simulated FRA data. 
The proposed external and internal indexes are used to evaluate the 
clustering result of each algorithm. To avoid the occasionality, these 
algorithms are repeatedly tested several times, and the best results are 
chosen and shown in Table 5. It can be seen that the RI, ARI, FMI and DBI 
values of the spectral clustering method are larger than those of the 
other clustering algorithms. 

To compare the global optimization ability and robustness of these 
clustering algorithms, all algorithms are repeatedly tested 20 times, and 
the RI indicator is used for evaluation. The results are shown in Fig. 11. It 
can be concluded that the clustering result of the spectral clustering 
algorithm has a much higher quality, which converges to the global 
optimal solution with a larger probability. 

In addition, the global optimization ability and robustness index of 
Fig. 11 are calculated and are shown in Table 6. It can be derived that the 
Fmean index of the spectral clustering algorithm is the largest among all 

a                           b 

c                           d 

e              f

Fig. 9. Clustering result without fault type information. (a) Overall image, (b) local enlarged image with the clustering result of 3, (c) local enlarged image with the 
clustering result of 4, (d) local enlarged image with the clustering result of 2, (e) local enlarged image with the clustering result of 1, (f) local enlarged image with the 
clustering result of 3 in the same location. 
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the clustering algorithms. The Fva index of the spectral clustering algo-
rithm is the second smallest. The Fva index of the hierarchical clustering 
algorithm is 0, and its robustness is best. However, the global optimi-
zation ability of hierarchical clustering is not as good as that of the 
spectral clustering algorithm. 

6. Experimental verification of a model transformer 

6.1. FRA signatures of emulated faulty winding 

Groups of emulated winding deformation experiments are performed 
on a test platform in previous study [13]. The tested transformer is a 
specially manufactured core-type model transformer with a voltage 
ratio of 10/0.4 kV and the capacity of 400 kVA, as shown in Fig. 12. A 
total of 45 groups of faulty windings are emulated, including 15 groups 
of RD faults, 15 groups of SC faults and 15 groups of DSV faults. In each 
fault type, different fault degrees and locations are emulated, and FRA 
curves are obtained. More detailed information about the model trans-
former and experimental setup can be found in [13]. The results of 
winding emulated fault are shown in Fig. 13. In Fig. 13, the solid line is 
healthy FRA signature, while the dotted lines are faulty FRA signatures 
with different fault status. Specifically, in Fig. 13(a), the defined term 
“1–2” means that there is an inter-disk SC fault between 1# disk and 2# 

a                           b 

c                           d 

e              f

Fig. 10. Distribution of original labels for four fault types. (a) Overall image, (b) local enlarged image of DSV faults, (c) local enlarged image of RD faults, (d) local 
enlarged image of AD faults, (e) local enlarged image of SC faults, (f) local enlarged image of SC faults in the same location. 

Table 5 
Evaluation indexes of clustering results by different clustering algorithms.  

Algorithms RI ARI FMI DBI 

K-means  0.8964  0.7242  0.7934  0.7170 
FCM  0.8834  0.6899  0.7678  0.7510 
Hierarchical  0.7878  0.4683  0.6153  0.6018 
Gauss  0.8556  0.6179  0.7146  0.8885 
Spectral clustering  0.9484  0.8617  0.8960  0.8948  
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disk. For Fig. 13(b), for instance, in the defined term “5–5%-4”, the first 
number “5” means 5 disks are radially deformed; the second number 
“5%” indicates the RD fault degree, the third number “4” means that the 
deformations are produced in four directions of winding disk. For Fig. 13 
(c), for instance, in the defined term “34-50p”, the first number “34” 
means that the DSV fault is produced between 3# disk and 4# disk, 
while the second term “50p” indicates the paralleled capacitance. 

6.2. Clustering analysis 

In order to verify the conclusions of simulation from the perspective 
of experiment, the proposed procedure is applied to process the above 
small amount of experimental FRA data. The statistical features are 
extracted, normalized, and imported into the spectral clustering algo-
rithm. The input feature is a 45*30 matrix. The clustering result and the 

distribution of the original FRA data with labels are shown in Fig. 14. 
Compare Fig. 14(a) and (b), the distribution of the FRA data after 

clustering is consistent with the original labels. There are boundaries 
between the winding RD, SC and DSV faults, except for two points, 
which could be caused by the similarity of two FRA signatures for DSV 
and RD fault. In each fault type, the FRA data are clustered. Further, 
because the fault degree is not consistently established in the setup of RD 
fault, the distribution of RD fault presents the characteristics of the 
cluster shape. While in DSV cluster, there is the characteristic of a local 
branch distribution because the fault degree setup is approximately 
continuous in each fault location. The above analysis indicates that the 
conclusions obtained from experimental data are similar to those of 
simulation study in part D, section IV. The spectral clustering algorithm 
is suitable for processing FRA data, and the winding main deformation 
fault types are separable. In addition, the evaluation indexes of the 
clustering quality are calculated and shown in Table 7. Fig. 14 and 
Table 7 indicate the effectiveness and superiority of the spectral clus-
tering algorithm. 

7. Conclusion 

For the first time, the spectral clustering of transformer FRA signa-
tures is studied. A procedure of clustering is introduced. Several statis-
tical indicators of FRA signatures are calculated and extracted as the 
input features. A total of 360 groups of FRA signatures under RD, AD, SC 
and DSV faults with different fault degrees and locations are obtained on 
a verified transformer model based on FEM simulation. The spectral 
clustering algorithm is used to process these signatures and to analyze 
the FRA characteristics. Other common clustering algorithms are also 
applied and compared. Moreover, some indexes are introduced to 
evaluate the accuracy, robustness and global optimization ability of the 
clustering algorithms. Finally, the experimental FRA signatures, ob-
tained from the artificial fault simulation of a 10 kV model transformer, 
are used to verify the electrical simulation and analysis. The following 
conclusions can be derived:  

• The clustering result of the simulated FRA data processed by the 
spectral clustering algorithm is almost consistent with the distribu-
tion of the original FRA labels, which indicates the applicability of 
the spectral clustering algorithm for processing FRA data.  

• The evaluation of the clustering accuracy, robustness and global 
optimization ability indicates the superiority of the spectral clus-
tering algorithm for processing FRA data, compared to those of other 
common clustering algorithms. 

Fig. 11. RI indicators of the clustering result after processing with the spectral, 
K-means, FCM, hierarchical and Gauss clustering algorithms for 20 times. 

Table 6 
Global optimization ability and robustness index of different clustering 
algorithms.  

Algorithms Fmean Fva 

K-means  0.8081 0.0537 
FCM  0.8099 0.0531 
Hierarchical  0.7878 0 
Gauss  0.7788 0.0760 
Spectral clustering  0.9205 0.0497  

Fig. 12. Tested model transformer with its tank uncovered. (a) Internal configuration of model transformer. (b) An image of model transformer.  

Z. Zhao et al.                                                                                                                                                                                                                                    



International Journal of Electrical Power and Energy Systems 130 (2021) 106933

11

• Different winding fault types fall into different clusters, and there are 
obvious boundaries between them, which indicate the separability of 
four winding deformation fault types.  

• The winding DSV, AD and RD fault present branch distribution 
characteristic in clustering result, and the degrees of these faults may 
be separable. Whereas in the SC fault clustering results, clusters can 
be observed, and the fault data show an “annulus” distribution. It is 
not easy to recognize the fault degree in winding SC faults, which 

Fig. 13. Measured FRA signatures of model transformer. (a) Simulated inter-disk SC fault. (b) Simulated RD fault. (c) Simulated DSV fault.  

ba

Fig. 14. Distribution of the clustering result and original FRA statistical features. (a) clustering results without fault type information, (b) original distribution of FRA 
statistical features with RD, SC and DSV faults. 

Table 7 
Evaluation indexes of clustering results by different clustering algorithms.  

Algorithms RI ARI FMI DBI 

K-means  0.6113  0.8222  0.7496  0.6324 
FCM  0.4058  0.7101  0.6422  0.6675 
Hierarchical  0.4326  0.7182  0.6671  0.6889 
Gauss  0.4911  0.7768  0.6564  1.5888 
Spectral clustering  0.9182  0.8129  0.8733  0.8244  

Z. Zhao et al.                                                                                                                                                                                                                                    



International Journal of Electrical Power and Energy Systems 130 (2021) 106933

12

might be due to the impact of this fault on electrical parameters is not 
linear.  

• The locations of the winding DSV, RD and SC faults are separable 
based on the phenomenon that each fault location shows a specific 
branch or cluster, which corresponds to the fault setup in the top, 
middle and bottom of HV winding. 

The characteristic of winding deformation faults implies that main 
winding faults can be identified and classified when some advanced 
machine learning algorithms are used, which are the state-of-the-art AI 
algorithms exactly study. In addition, the FEM simulation was verified 
on an oil-immersed transformer. However, the data analytic result has 
not been valid for a dry type transformer at present, which will be 
studied in the future. 
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