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Abstract— Winding inter-turn and ground short circuit (SC)
faults are common fault types of synchronous machines. The
sweep frequency response analysis (SFRA) has been recently
introduced to detect winding SC faults. In addition, impulse FRA
(IFRA) provides an alternative that serves the same objective.
Whether SFRA or IFRA, so far, there is still no standard
and reliable interpretation code. The present interpretation of
frequency response still calls for experienced personnel, which
could be subjective. Thus, many researchers have used machine
or deep learning-based models to detect winding SC faults from
the frequency response automatically. However, most proposed
models cannot provide real-time feedback and update. There-
fore, this study proposes an improved model using life long
learning strategy based on incremental classifier and repre-
sentation learning (iCaRL) to interpret and analyze the IFRA
curves. This study artificially simulates and records winding
SC faults on a 5-kW synchronous machine. The proposed
method is then verified on the test set and compared with
other traditional life long learning strategies. The experimen-
tal results show that the accuracy of the proposed model is
higher than 90% under all types of fault data streams in
real time. The comparative experimental results show that the
proposed model performs better than other life long learning
strategies (Github code: https://github.com/cy1034429432/Impro
ved-Interpretation-of-IFRA-based-on-iCaRL/tree/main).

Index Terms— Fault detection, incremental classifier and rep-
resentation learning (iCaRL), life long learning, synchronous
machine, winding.
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I. INTRODUCTION

AS ONE of the most significant power generation equip-
ment, synchronous machines are used in thermal and

hydraulic power plants [1], [2], [3]. With the more exten-
sive application of synchronous machines, people pay much
attention to their operational safety and stability. However,
according to [4], 2/3rd of the faults in large synchronous
machines are owing to winding faults. If synchronous
machines are used in critical production processes or equip-
ment, winding short circuit (SC) faults may lead to downtime
and loss of production capacity, further increasing economic
losses [5]. Therefore, detecting synchronous machine winding
SC faults is of great significance in ensuring the safe and
reliable operation of the machine.

At present, the winding SC fault detection methods mainly
include repetitive surge oscilloscope (RSO) [6], motor current
signature analysis technique (MCSA) [7], and impedance
dielectric dissipation method [8]. These methods are signif-
icant, but new methods have also been proposed and studied.
In recent years, some researchers [2], [3], [8], [9], [10]
have introduced frequency response analysis (FRA), which
has demonstrated promising results in detecting faults in
power transformer windings, to detect winding SC faults of
synchronous machines offline, and it can be used for the
regular inspection of synchronous machines. FRA can be
divided into sweep FRA (SFRA) and impulse FRA (IFRA).
SFRA obtains the frequency response curve of machines
through sweep frequency signal, and frequency response is
the amplitude–frequency characteristic of the winding transfer
function [11]. IFRA provides an alternative way to get the fre-
quency response by injecting high-frequency impulse signals.
However, it gets rapidity by losing certain stability because of
the nature of high-frequency impulse signals [3].

Regardless of whether SFRA or IFRA is used, there are
three primary methods for interpreting the frequency response
curve to diagnose the presence, extent, and location of
winding SC faults: 1) mathematical–statistical indicators are
constructed and computed, and a threshold value is established
and compared to detect winding faults; 2) based on the
machine’s equivalent high-frequency electrical circuit model,
the frequency response curves of winding under various faults
are analyzed, and the amplitude and frequency information
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of resonant points are used to detect faults; and 3) advanced
artificial intelligence (AI) is used to process the frequency
response, and many machine learning and deep learning-based
models are used as classifiers.

In the first method, various mathematical–statistical indi-
cators are used to analyze the relationship between winding
faults and frequency response curves. Ni et al. [12] provide a
series of mathematical–statistical indicators linearly correlated
with winding SC faults’ degrees. Besides, the correlation coef-
ficient (CC), the absolute sum of logarithmic error (ASLE),
standard deviation (SD), and other indicators are also often
used [13], [14], [15]. The indicators under each subfrequency
band of frequency response are compared with the threshold
values to quantitatively and qualitatively analyze the winding
fault. However, there is no standard and defined threshold val-
ues for the present method, and even if a suggested threshold
value is given, it does not apply to all machines. Besides, there
is no basis for subfrequency band division [2].

In the second method, [9], [10], [11], [16] analyze the
influence of various winding faults on the frequency response
curve by modeling the equivalent broadband or high-frequency
circuits of machines; then, the information of resonant points
is often analyzed to make decisions on diagnosis results
regarding the winding faults. However, machines’ equivalent
circuits should be first established, which could be complex
and time consuming. Meanwhile, this method is not entirely
objective or intelligent, as it heavily relies on manual analysis.

Therefore, there is still no standard and reliable interpreta-
tion code, and the present interpretation of frequency response
still calls for experienced personnel, which would be subjec-
tive. Recent studies use advanced AI techniques to process
the frequency response to solve this problem, elaborated in
the third method.

In the third method, many researchers use various machine
learning-based classifiers to detect winding faults. For exam-
ple, Mugarra et al. [17] use the fault diagram for supervised
learning fault detection; Chen et al. [8] use isolation forest (IF)
for unsupervised learning fault detection. Machine learning-
and deep learning-based models seem to overcome some
drawbacks in the first two methods.

However, for the existing AI methods, there are some
problems in winding faults detection.

1) The generalization performance of some machine
learning and deep learning-based detection models is
inadequate. Several supervised learning models can only
learn feature mapping from their own winding fault
data and are incapable of detecting other fault types
that are not included in the dataset. For example, some
traditional machine learning models mentioned in [18]
only concentrate on winding inter-turn SC faults and
exhibit excellent performance in analyzing inter-turn SC
faults. Nevertheless, the trained model is unsuitable for
predicting ground SC faults, as this fault is an entirely
new fault type for the model.

2) The current models do not have any real-time feedback
capability. Specifically, the trained models cannot be
updated in real time, so researchers need to train fault
detection models from scratch when a new fault needs

to be added. Due to the lack of self-adaptability to
new data, most current methods are not applicable in
engineering and are only suitable for laboratory settings.

To solve the above problems, this study proposes an
improved detection method of winding SC faults for the
synchronous machine using life long learning based on iCaRL.

The main contributions of this study are as follows.
1) Life long learning strategy is the first to be introduced

into fault diagnosis in this study, and the proposed
method has strong engineering practicality according to
the characteristics of life long learning by considering
data input and data storage.

2) An improved winding SC fault diagnosis method is
proposed in conjunction with IFRA, which can automat-
ically identify the type and degree of winding SC faults
with high accuracy and improve the detection model’s
generalization performance in interpreting the frequency
response.

3) Compared with all previous works, the proposed
method’s biggest highlight is the model’s real-time
update capability. This capability allows the model’s
parameters to be updated based on users’ real-time
feedback, enabling adaptation to new winding fault types
and closing the gap between the trained fault detection
model and its updating ability.

The remainder of this study is organized as follows.
The basic principles of IFRA and iCaRL are introduced
in Section II. The IFRA dataset obtained from the artifi-
cially simulated winding SC fault experiment is introduced in
Section III. The experimental results of verifying the proposed
method are analyzed in Section IV. The comparison of the
proposed method with other traditional life long learning
strategies is presented in Section V. The discussion and
limitations are given in Section VI. The conclusions are given
in Section VII.

II. THEORETICAL BASIS OF PROPOSED METHODS

A. Basic Principle of IFRA

The application of IFRA in detecting synchronous machine
winding SC faults has become increasingly popular among
researchers due to its high sensitivity, rapid diagnostic speed,
cost-effectiveness, and nondestructive detection process [2],
[8]. The winding of the synchronous machine can be modeled
as an equivalent two-port circuit consisting of inductance,
capacitance, and resistance, as shown in Fig. 1(a) [11]. When a
high-frequency impulse signal vin(n) is injected at one terminal
of winding, the response current iout(n) at the other terminal
can be recorded, and both vin(n) and iout(n) are used to
construct the transfer function H(k) based on the Fourier
transform of time domain signal to the frequency domain,
as shown in (1)–(3). The amplitude–frequency characteristic
of transfer function H(k) is also called the frequency response
curve. After manufacturing the synchronous machine winding,
its transfer function H(k) is determined accordingly. The
presence of ground or inter-turn SC faults in the synchronous
machine winding will alter the parameters of its equivalent
circuit model, resulting in changing the frequency response
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Fig. 1. Synchronous machine winding’s equivalent circuit model structure
and simulated winding fault. (a) Equivalent circuit model structure. (b) Inter–
turn SC fault simulated by the built equivalent circuit [11].

Fig. 2. Differences in the training process between with or without life long
learning strategy.

curve [H(k)]. For instance, Fig. 1(b) shows H(k) in dif-
ferent degrees of inter-turn SC winding faults simulated by
short-circuiting equivalent units [11]. The discrepancy in H(k)

between the faulty and normal windings, such as shifts in
resonance frequency, is employed for detecting any defects
in the winding [2], [8]

Vin(k) =

N−1∑
n=0

vin(n)e− j 2π
N kn (1)

Iout(k) =

N−1∑
n=0

iout(n)e− j 2π
N kn (2)

H(k) = 20 log10
|Iout(k)|

|Vin(k)|
(3)

where vin(n) and iout(n) are the N points sampling signal of
high-frequency impulse signal and response current; Vin(k)

and Iout(k) are fast Fourier transforms (FFT) of vin(n) and
iout(n); and H(k) is the transfer function.

B. Basic Principle of iCaRL

Fig. 2 shows differences in the training process between
with or without learning life long learning [19], [20], [21],
[22]. As can be seen from Fig. 2, the fault detection model
(old model) is trained by the existing fault data (old data) at
the beginning. After exiting new faults, there are two ways

Fig. 3. Training data stream of life long learning.

to build a new model: 1) without life long learning, it should
train a new model from scratch with all data, including new
and old data and 2) with life long learning, it could train a new
model by updating the old model only with new data. With
the new data feedback, the old model with life long learning
can learn new faults when in use. A fault detection model
with a life long learning strategy automatically updates the old
model, overcoming the limitation of weak self-adaptability to
new fault data.

Fig. 3 shows the training data input way of life long learning
during the training process, usually called the training data
stream. Each input data stream is a task that can contain one
or more classes. Fig. 3 shows an example, which shows that
in task 1, the model learns four different degrees of ground
SC faults, and in task 2, the model learns four different inter-
turn SC faults. With the new training data streams, the model
can be continuously updated. Therefore, the model with life
long learning strategy is also called a class-incremental learner.
In addition, life long learning also includes another type called
instance-incremental learning [19]. In the research scenario of
this study, instance-incremental learning means learning the
same fault type with different types of synchronous machines.
Because of the limitation of experimental equipment, this
study only adopts the former.

Generally, when the model’s classification classes (fault
types) increase, it is necessary to modify the model’s last layer
structure first, then mix new data with old data, and finally
train a new model from scratch. It will require many memory
resources to store new and old training data and need more
computing power and time to build a new model. This problem
can be avoided using the data stream in Fig. 3 [19]. In addition,
the collecting data method in real life is more similar to the
data stream, and it is impossible to collect all winding fault
data simultaneously. Therefore, the model should only detect
fewer winding faults initially, and with the users’ real-time
feedback, the model will be updated to detect more winding
faults.

In life long learning, there are many methods, such as
elastic weight consolidation (EWC) [22] and learning without
forgetting (LWF) [23], which show promising results on some
simple datasets. The iCaRL proposed in the 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) shows much better performance than the above two
methods on some complex datasets, and iCaRL combined with
IFRA has the following advantages: 1) for the IFRA data
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Fig. 4. Overall framework diagram of iCaRL. This figure shows the
relationship between the algorithms. The initial input data are the existing
fault data, and the subsequent input data are the new fault data.

of new winding faults at different times, the fault detection
model could be trainable; 2) at any time, the model can
present relatively high performance for the winding faults that
have occurred; and 3) the model updating time and storage
resources of winding faults detection equipment with the
diagnosis model are limited, or the growth of resources is
slow with the growth of new winding faults.

The overall framework diagram of iCaRL is shown in Fig. 4.
The pseudo-code of the algorithms is shown in the Appendix.
The main characteristics of its algorithms are as follows.

1) iCaRL Classify: Unlike traditional softmax, iCaRL uses
the nearest-mean-of-exemplars classifier. In addition, the
feature map uses iCaRLNet, and the iCaRLNet structure
refers to Avalanche [21]. This algorithm is responsible
for classifying the input.

2) iCaRL IncrementalTrain: This algorithm is responsible
for learning new classes.

3) iCaRL UpdataRepresentation: Knowledge distillation is
added to the loss function compared to traditional cross-
entropy. This algorithm is responsible for updating the
feature map.

4) iCaRL ConstructExemplarSet: This algorithm is respon-
sible for constructing its exemplar set for the current
winding faults.

5) iCaRL ReduceExemplarSet: This algorithm is responsi-
ble for determining the number of IFRA images restored
in each new task and deleting the IFRA images of the
old task.

III. WINDING SC FAULT EXPERIMENT SETUP AND
IFRA DATASETS

The synchronous machine winding SC faults artificial sim-
ulation platform is built, and the winding SC faults simulation
experiments are carried out to verify the effectiveness of
the proposed method. The experimental platform is shown
in Fig. 5. In Fig. 5, the experimental platform includes a
pulse generator, a current sensor, a voltage probe, an oscil-
loscope, and a 5-kW synchronous machine without parallel
branches and rotor. (Therefore, there is no need to con-
sider IFRA measurement for rotating machines with unstable

Fig. 5. Measurement experimental diagram. (a) Actual wiring diagram.
(b) Measurement wiring diagram.

TABLE I
NAMEPLATE VALUES OF SYNCHRONOUS MACHINE AND DEVICES

repeatability [3], [8].) These devices’ key nameplate parame-
ters are shown in Table I.

In Fig. 5, the voltage probe and current sensor measure
impulse signal vin(n) and response current iout(n), and the
waveform is recorded by oscilloscope. Set the sampling rate
on the oscilloscope as 25 MHz and the sampling point as 10k.
Then, vin(n) and iout(n) (measured 64 times) are averaged
on the oscilloscope to reduce the impact of white noise.
(The above measurement parameters are referenced from our
previous work [3].) Finally, IFRA is calculated on the average
time-domain signal.

According to [2], [3], [8], [9], [14], [24], [25], and [26],
the ground and inter-turn SC faults are simulated artificially.
In the experiment, ground SC faults of varying degrees are
simulated by connecting 40-/20-/10-/0-� resistance in parallel
with winding slot 1 of the U-phase, called ground SC fault (1-
G-minor, middle, severe, and extremely severe), respectively.
Windings in slots 1–3 of the U-phase are short-circuited to
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Fig. 6. Wiring diagram of artificially simulated synchronous machine winding
SC faults.

TABLE II
IFRA DATASETS OF SYNCHRONOUS MACHINE WINDING

simulate different degrees of inter-turn SC faults. In addition,
to obtain more data on inter-turn SC fault in different degrees,
this research parallels the 10-� resistance to slots 1–3, called
inter-turn SC fault (1–2 severe, extremely severe, 1–3 severe,
and extremely severe), respectively. The wiring diagram is
shown in Fig. 6, and the several IFRA curves are shown in
Fig. 7. Then, repeat the experiment and construct the IFRA
dataset containing nine classes, whose details are shown in
Table II.

For the above, it must be noted that this study only treats dif-
ferent connection resistance values as degrees of winding SC
fault, which only verifies the proposed method. For different
synchronous machine windings, the simulated fault resistance
values (According to [3], [9], [27], and [28], resistance values
are mostly around 0–100 �) may be different, which can
be determined according to the actual situation. This study
focuses on winding SC faults detection methodology, and the
selection of connection resistance values can be referred to [3].

IV. VALIDATION EXPERIMENTS OF THE PROPOSED
METHOD

A. Comparison of Different Feature Maps

The feature map uses the image classification model for the
following reasons.

Fig. 7. IFRA curves of the synchronous machine in various winding fault
states. (a) IFRA curves of ground SC faults in different degrees. (b) IFRA
curves of inter-turn SC faults in different degrees.

1) The critical rule that IFRA curves can detect winding
faults is to use the normal winding IFRA curve to make
a horizontal comparison with the faulty winding IFRA
curves. Then, relevant researchers get the changing trend
to detect winding faults. The IFRA curves’ change
is usually the deviation of resonance frequency and
resonance point, and the image classification model
can excavate the relationship between IFRA curves’
differences and various winding faults.

2) If a sequence model is used as the feature map, the input
sequence dimension will be very long, and different
selections of sampling frequency will lead to difficult
training and poor generalization of the feature map.

In addition, we explained how the image classification models
understand IFRA for detecting synchronous machine wind-
ing SC faults based on Smooth Grad-CAM++ in previous
work [2].

The more epochs a model undergoes training, the more
severe the problem of catastrophic forgetting becomes. There-
fore, the accuracy obtained by using a feature map alone
represents the upper bound of the feature map when employing
a life long learning strategy [22], [23]. The first step in adopt-
ing a life long learning strategy is to select a high-accuracy
and appropriate feature map. The loss function uses softmax to
fairly compare the feature maps’ winding SC faults detection
performance. The results are shown in Fig. 8.

As shown in Fig. 8, the accuracy of the feature maps is
more than 90% based on Resnet, while the low accuracy of
large-scale Resnet is related to the IFRA dataset being too
small [2]. The accuracy of other simpler models is low because
the extraction ability is weak. The iCaRLNet is a model built
based on Resnet’s basic structure residual block [21], and
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Fig. 8. Comparison of different feature maps.

TABLE III
SERVER HARDWARE AND SOFTWARE CONFIGURATIONS

the average accuracy has reached 99.63%. The Resnet18 and
iCaRLNet demonstrate similar performance, but iCaRLNet has
proven to exhibit high performance on numerous datasets [21],
and this study chooses to utilize iCaRLNet.

B. Selection of Training Hyperparameters

All experiments in this article are trained on the server, and
the server configuration is shown in Table III. In addition, all
codes are based on Avalanche [21] and PyTorch. The details
of the iCaRL and the training hyperparameters settings are
shown in the code on GitHub.

C. Experimental Result

As shown in Table II, the IFRA dataset has nine classes.
Therefore, this article simulates three IFRA training data
streams (a single task containing 1, 3, and 9 classes). When
the model is trained, the combination and arrangement order
of classes will also affect the accuracy of the model [21], [22],
[23]. For comparison, Figs. 9–11 show the loss function curve,
confusion matrix, and accuracy curve under the same arrange-
ment order training data stream. The average accuracy of the
proposed model on the test set under different arrangement
order training data streams is shown in Table IV, where the
values in brackets are the maximum and minimum values of
the accuracy.

As shown in Fig. 9, the value of the loss function suddenly
increases during training because a new task is added. In addi-
tion, the mutation interval of the loss curve becomes larger
and larger because the input training data increases with more
tasks, while the batch size and epoch do not change, so the
interval becomes larger. It can be seen from Fig. 10(b) that
task 1 has obvious catastrophic forgetting in this case. It can
also be concluded from the accuracy curve in Fig. 11(b) that
task 1 did not get satisfactory accuracy at the end, which is
related to the fact that this order is not conducive to learning in
this case, but catastrophic forgetting may be reduced in other
cases according to Table IV. It can be seen from Fig. 11(c)

TABLE IV
AVERAGE ACCURACY UNDER DIFFERENT ARRANGEMENT ORDERS OF

THE TRAINING DATA STREAM

that although there will be some catastrophic forgetting in the
training process, it has been overcome in training, and the
accuracy of any task has reached 100% at the end, which is
closely related to the use of knowledge distillation in the loss
function.

According to the statistical results in Table IV, the average
accuracy of using iCaRL in different cases is more than
90%, and the robustness of this algorithm is high, which is
feasible for synchronous machine winding SC faults detection
equipment. The average accuracy of nine classes per task
reaches 99.25%, which shows that the classification efficiency
using the nearest-mean-of-exemplars classifier is the same as
that using softmax. In addition, when the parameters of the
feature map change, the nearest-mean-of-exemplars classifier
will change and modify self-adaptively, which can also reduce
catastrophic forgetting. The average accuracy change trend in
Table IV is also consistent with life long learning [19], [20],
[21], [23]. The model for training all data must be the upper
bound of life long learning performance because the more
tasks, the more severe and unavoidable catastrophic forgetting.

V. ABLATION EXPERIMENT AND COMPARISON OF THE
PROPOSED METHOD WITH OTHER LIFE LONG LEARNING

STRATEGIES

A. Ablation Experiment of the Critical Hyperparameter

The iCaRL has a critical hyperparameter K related to iCaRL
ConstructExemplarSet and ReduceExemplarSet, as introduced
in the Appendix. Hyperparameter K (memory size) determines
the resource size of storing IFRA data in the exemplar set. The
K also simulates the internal memory of detection equipment,
whose value significantly impacts the model to overcome
catastrophic forgetting.

Fig. 12 shows the average accuracy under different K . For
the experimental synchronous machine in this study, it can be
seen from Fig. 12 that choosing 900 as K has certain advan-
tages. After being greater than 900, the average accuracy does
not increase significantly, while less than 900 will significantly
impact the average accuracy.

In model training, there exist numerous hyperparameters
that necessitate prior knowledge of training high-performance
models and appropriate adjustments for diverse physical sce-
narios. However, these conventional hyperparameter settings
concerning the training model are not the critical parameters
of the proposed method, so these hyperparameter settings are
presented on the GitHub code.

B. Comparison Results of the Proposed Method With Other
Life long Learning Strategies

To demonstrate the indispensability of the fault diagnosis
model incorporating life long learning strategy and highlight
the exceptional performance of iCaRL, this study undertakes
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Fig. 9. Loss function under different IFRA data streams. (a) One task. (b) Three tasks. (c) Nine tasks.

Fig. 10. Confusion matrix under different IFRA data streams. (a) One task. (b) Three tasks. (c) Nine tasks.

Fig. 11. Accuracy curve under different IFRA data streams. (a) One task. (b) Three tasks. (c) Nine tasks. The training data stream in Figs. 9–11 is in a
specific order, but the results will be different under different training data streams in other arrangement orders.

Fig. 12. Average accuracy of different IFRA data streams under different K .
The above results are obtained from 20 repeated experiments. The solid line
is the average accuracy, and the length of the lower and upper parts represent
the minimum accuracy and the maximum accuracy.

experiments including the fault diagnosis model without life
long learning and with conventional life long strategies. For the
fairness of comparison, all experiments are conducted using
one class per task, consistent with the same training data
stream (same training order) in Fig. 11(c).

TABLE V
ACCURACY WITHOUT LIFE LONG LEARNING STRATEGY

Table V shows the training results of iCaRLNet when
the life long learning strategy is not implemented (softmax
is used in the last layer). The training order of each class
is represented by the vertical and horizontal axes, with the
abbreviations of winding fault types from Table II displayed
on both axes. For example, “6” stands for “inter-turn SC fault
(1–3 and extremely severe)” in Table II. The values in the table
indicate the accuracy of each task (calculate the accuracy on
the test set of a single class) in the test set obtained after
completing each task, i.e., the model will be “tested on” test
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TABLE VI
ACCURACY UNDER EWC

TABLE VII
ACCURACY UNDER LWF

sets of all classes each time a task is “after training.” The
above description also applies to Tables VI and VII. It can
be seen from Table V that without life long learning, the
model only cares about the current task and has a tremendous
catastrophic forgetting of the previous tasks. It finally regards
all winding faults as fault 7, which is related to the fact that
the last constructed loss function only contains fault 7.

In the field of life long learning, Deepmind proposes EWC
to overcome catastrophic forgetting [22]. Compared with
the traditional multiclass classification, this method adds a
regularization-like term to the loss function. In addition, LWF
is used for the IFRA dataset [23]. Like iCaRL, LWF also
uses knowledge distillation technology to solve catastrophic
forgetting. Tables VI and VII show the training results of
iCaRLNet with EWC and LWF. It can be seen from Table VI
that although EWC is better than not implementing life long
learning strategy and can only accurately identify the last two
winding fault types at the end, it is still much worse than
iCaRL. It can be seen from Table VII that LWF has less
catastrophic forgetting in fewer training classes (<3), while
LWF is challenging to overcome catastrophic forgetting when
the classes are greater than 4. In addition, when using LWF,
because the classes are 9, it is necessary to set nine penalty
hyperparameters. Compared with iCaRL, there are too many
critical hyperparameters, but the performance is much worse
than iCaRL.

VI. DISCUSSION AND LIMITATION

Currently, many AI-based works are related to detecting
synchronous machines’ winding SC faults [2], [3], [8], [11],
[24], [28]. However, their work only focuses on the perfor-
mance of fault diagnosis models and does not discuss the
practical application of the fault detection models outside of
the laboratory. As the proposed method does not solely target
the performance of fault models, it cannot be fairly com-
pared with previous works. This study offers a practical and
suitable model for making fault-detection equipment. Using
fault-detection equipment embedded with life long learning
strategy makes it possible to continuously learn different types

of winding faults throughout the lifetime of the synchronous
machine.

Although the model with life long learning strategy exhibits
excellent performance, there are still many limitations to the
proposed method.

1) This study focused on the same machine and did not
conduct experiments on other types of synchronous
machines. This is due to limitations in the authors’
experimental equipment and sample dataset. Future
research could consider expanding the sample dataset
and experimental equipment to explore the application
and effectiveness of this method on different types of
machines. In addition, it is difficult to effectively define
winding faults of the same degree for different machines.
A minor ground SC fault resistance may be in the
megaohm level for large synchronous machines but only
in the 10-� level for small machines.

2) The fault diagnosis of synchronous machines should
consider diverse signals, such as vibration and sound
signals. However, this study only focuses on electrical
signals, which may lead to incomplete diagnosis results.
In addition, the selection of feature maps should be
diverse. Choosing a multimodal model can simultane-
ously consider diverse signals, expand the discernible
fault types, and further improve fault diagnosis perfor-
mance.

3) In fact, many of the effects in use are not considered at
all. Further research is needed to explore the feasibility
and effectiveness of implementing the proposed method
in real-world scenarios.

VII. CONCLUSION

This study presents an improved detection method of
winding SC faults for synchronous machines using life long
learning strategy based on IFRA and iCaRL. According to the
experimental results and comparative analysis, the following
conclusions are obtained.

1) The average accuracy of the proposed detection model
exceeds 90% in all cases. Furthermore, the general-
ization performance of the proposed method can be
continuously enhanced by inputting newly diverse data.

2) The iCaRL has a better ability to overcome the problem
of catastrophic forgetting than the EWC and LWF.
Besides, without life long learning strategy, the wind-
ing SC faults detection accuracy of iCaRLNet reaches
99.63%, which is also better than most other traditional
image classification models.

3) The proposed fault detection model can guide the
practical application of the deep learning model, and
the detection equipment embedded with the proposed
method can have the ability for life long learning. After
getting users’ feedback, the equipment can update the
model in real time, and there is no need to train the
model from scratch.

4) With the unification of image input and sequence input
models in recent years, a multimodal model with the
ability to detect any fault of the synchronous machines
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Algorithm 1 iCaRL Classify
Input x //IFRA image to be classified
require p = (P1, . . . , Pt ) //class exemplar sets
require ϕ: χ → Rd //feature map

for y = 1, . . . , t do

µy ←
1
|Py |

∑
p∈Py

ϕ(p) //mean-of-exemplars

end for
y∗← arg min

y=1,...,t
||ϕ(x)− µy ||

output class label y∗

Algorithm 2 iCaRL IncrementalTrain
Input X s, . . . , X t // training examples in per-class sets
input K // memory size
require 2 //current model parameters
require p = (P1, . . . , Ps−1) //current exemplar sets

2← UpdateRepresentation(X s, . . . , X t
; p, 2)

m ← K/t //number of exemplars per class
for y = 1, . . . , s − 1 do
Py ← ReduceExemplarSet(Py, m)

end for
p← (P1, . . . , Pt ) // new exemplar sets

Algorithm 3 iCaRL UpdataRepresentation
Input X s, . . . , X t // training images of classes s, . . . , t

require p = (P1, . . . , Ps−1) // exemplar sets
require 2 //current model parameters

// form combined training set:

D←
⋃

y=s,...,t

{(x, y) : x ∈ X y
}∪

⋃
y=1,...,s−1

{(x, y) : x ∈ P y
}

//store network outputs with pre-update parameters:
for y = 1, . . . , s − 1 do

q y
i ← gy(xi ) f or all (xi ) ∈ D

end for
run network training with a loss function

ℓ(2) = −
∑

(xi ,yi )

[

t∑
y=s

δy=yi log gy(xi )+ δy ̸=yi log(1− gy(xi ))

+

s−1∑
y=1

q y
i log gy(xi )+(1−q y

i ) log(1−gy(xi ))]

that consists of classification and distillation terms

can be established with life long learning strategy
in the future.

APPENDIX

The following is the pseudo-algorithm code for iCaRL. X s

represents the IFRA training image set of s-type winding fault,

Algorithm 4 iCaRL ConstructExemplarSet
Input image set X = {x1, . . . , xn} of class y

input m target number of exemplars
require current feature function ϕ : χ → Rd

µ← 1
n

∑
x∈X ϕ(x) //current class mean

for k = 1, . . . , m do
pk ← arg min

x /∈X
||µ− 1

k [ϕ(x)+
∑k−1

j=1 ϕ(p j )]||

end for
p← (P1, . . . , Pm)

output exemplar set P

Algorithm 5 iCaRL ReduceExemplarSet
Input m //target number of exemplars
input P = (p1, . . . , p|P|) //current exemplar set
P = (p1, . . . , p|m|) //current class mean
output exemplar set P

2 represents the feature map’s parameters, K represents the
maximum number of IFRA images that can be restored in the
exemplar set, and P represents the current exemplar set.
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