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Abstract— Frequency response analysis (FRA) is a well-1

established technique to detect transformer winding defor-2

mation faults. Its diagnostic application is based on the3

principle that a transformer winding can be represented4

by an equivalent circuit consisting of resistors, inductors,5

and capacitors. However, rapidly obtaining an accurate and6

physically meaningful broadband equivalent circuit model7

for windings remains challenging, limiting both the under-8

standing of fault mechanisms and the generation of data for9

data-driven fault diagnosis methods. To address these dif-10

ficulties, this study proposes a two-step broadband equiv-11

alent circuit modeling method for the transformer winding12

based on FRA and Bayesian optimization (BO), considering13

long-distance mutual inductances and capacitances. The14

proposed method is validated in a specially designed 1015

kV power transformer. Subsequently, two kinds of wind-16

ing deformation faults, including inter-disk short circuits17

(IDSCs) and disk space variations (DSVs), are simulated18

on the basis of the built model and compared with the19

experimental FRA data. The validation results confirm the20

accuracy and effectiveness of the proposed method in the21

construction of the equivalent winding circuit.22

Index Terms— Winding modeling, broadband equivalent23

circuit, frequency response analysis, Bayesian optimiza-24

tion.25
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I. INTRODUCTION 26

POWER transformers are critical components within the 27

power system, playing an essential role in power trans- 28

mission, conversion, and voltage regulation [1]–[3]. Their 29

ability to manipulate voltage and current mitigates fluctuations 30

that degrade power quality or cause equipment failure, enhanc- 31

ing the stability of the overall power system. Consequently, 32

given the critical and costly nature of transformers, their 33

malfunctions not only incur substantial maintenance expenses 34

but also significantly compromise the reliability and economic 35

efficiency of the power system [4], [5]. Therefore, ensuring 36

the reliable operation of power transformers is important for 37

maintaining the safe and stable functioning of the power 38

system [6]. 39

Winding deformation is a common fault in power trans- 40

formers, often resulting from short-circuit (SC) currents that 41

generate substantial electromagnetic forces. These forces can 42

cause irreversible deformation of the transformer windings. 43

As reported by the International Council on Large Electric 44

Systems (CIGRE), winding deformation accounts for approx- 45

imately 30% of transformer faults. In practice, assessing 46

winding conditions requires draining the transformer oil for 47

internal visual inspection, which is time-consuming and low- 48

efficiency. To overcome these difficulties, researchers have 49

developed various diagnostic methods using various measured 50

signals, including short circuit impedance (SCI) [7], low volt- 51

age impulse (LVI) [8], frequency response analysis (FRA) [9]– 52

[11], etc. Among these, FRA has gained the most popularity 53

among researchers and related maintenance personnel as an 54

effective technique for detecting winding deformation because 55

of its precision, simplicity, cost-effectiveness, efficacy, and 56

non-destructive nature. FRA is an offline diagnostic technique 57

used to detect transformer winding faults through graphical 58

analysis, which is currently a widely adopted method in 59

periodic inspection of transformer windings, phase by phase 60

[2], [3]. Specifically, FRA employs the frequency response 61

fingerprint, also referred to as the transfer function or FRA 62

data, to interpret winding deformation faults. 63

The frequency response fingerprint of transformer windings 64

can be determined through both direct measurement and 65
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simulation using equivalent circuit models. In simulations,66

these models are developed to investigate the influence of67

various physical deformations on the winding’s frequency re-68

sponse fingerprint, offering a more efficient and cost-effective69

approach compared to destructive physical experiments. Con-70

sequently, an accurate equivalent circuit model facilitates cost-71

free simulations of transformer winding faults [9], [11] and72

enables the generation of data for data-driven fault diagnosis73

methods [1], [12], [13]. Furthermore, the interpretation of74

frequency response fingerprints for winding fault diagnosis75

currently relies heavily on expert experience, which means that76

an accurate winding model can help maintenance personnel77

improve the objectivity of their judgments.78

Currently, there are three common methods for establishing79

FRA-based winding equivalent circuit models:80

1) Black-box models use multiple RLC units to simulate81

resonance points in their frequency response finger-82

prints, without requiring details of the physical structure83

of the transformer [14], [15]. While yielding similar84

frequency response fingerprints, this approach provides85

information lacking physical significance, rendering it86

unsuitable for investigating the influence of transformer87

winding faults.88

2) White-box models, usually constructed via finite ele-89

ment method (FEM) based on the transformer’s physical90

structure and material properties, directly derive the fre-91

quency response fingerprints from the electromagnetic92

field [9], [11]. However, this approach is computation-93

ally intensive and time-consuming, but it often yields94

simulated data that deviates significantly from measured95

data.96

3) Grey-box models are a variant of the black-box mod-97

els, which first construct an equivalent circuit using98

prior physical knowledge and then identify parameters99

through optimization algorithms, such as genetic al-100

gorithm (GA) and particle swarm optimization (PSO),101

based on measured frequency response fingerprints [16]–102

[20]. However, this parameter identification process fre-103

quently necessitates extensive adjustments to the search104

parameter space to obtain optimal parameters that yield105

a close match with the measured data.106

Therefore, this study proposes a two-step broadband equiv-107

alent circuit modeling method for transformer windings based108

on FRA and Bayesian optimization (BO) to address the109

drawbacks mentioned above. The main contributions are as110

follows:111

1) We propose a two-step broadband equivalent circuit112

modeling method for transformer windings, offering a113

generalizable approach applicable to other transform-114

ers. The proposed model, implemented in Simulink,115

simulates the frequency response of both healthy and116

faulty transformer windings while retaining physical117

significance.118

2) Unlike previous studies that employed an unrestricted119

parameter space, we use a white-box model to generate120

a set of feasible parameter solutions, which serve as a121

reference for subsequent parameter identification. This122

approach substantially increases both the probability and 123

speed of obtaining viable solutions. 124

3) In contrast to previous studies employing conventional 125

optimization algorithms with mean squared error (MSE) 126

as a fitness function, we adopt a sample-efficient multi- 127

objective Bayesian algorithm (MOBO), utilizing three 128

common fitness functions as distinct optimization objec- 129

tives. BO-based algorithms reduce computational costs 130

by minimizing the number of model executions required 131

for parameter identification. 132

The remainder of this study is organized as follows: Section 133

II introduces the methodology, Section III presents the results, 134

Section IV presents the discussion and limitations, and Section 135

V provides the conclusions. 136

II. METHODOLOGY 137

A. Basic principle of FRA and proposed model 138

Under high-frequency excitation, typically above 1 kHz, the 139

transformer core exhibits negligible excitation effects, allowing 140

the winding to be represented as a passive linear two-port 141

network characterized by distributed parameters, including 142

resistors, inductors, and capacitors [17]. In practice, sinusoidal 143

signals R⃗in(ω) with frequencies ranging from 1 kHz to 1 MHz 144

are applied to the input terminal of the winding, and the corre- 145

sponding response signals R⃗out(ω) are measured at the output 146

terminal, yielding the frequency response fingerprint T (ω), as 147

defined in Equation (1). The condition of the winding, whether 148

healthy or faulty, is characterized by this frequency response 149

fingerprint. Specifically, the distributed parameters are influ- 150

enced by the geometric dimensions of the winding. Therefore, 151

any winding deformation alters these parameters, which causes 152

shifts in the resonance points, thereby changing the frequency 153

response fingerprint. By comparing the measured FRA data 154

with a baseline (healthy) fingerprint, maintenance personnel 155

can analyze these variations to assess the condition of the 156

winding [2], [3]. 157

T (ω) = 20 log10

∣∣∣∣∣ R⃗out(ω)

R⃗in(ω)

∣∣∣∣∣dB (1)

where R⃗in(ω) and R⃗out(ω) are excitation and response signals, 158

and T (ω) is the frequency response fingerprint (amplitude 159

versus frequency). According to existing FRA standards [21]– 160

[23] and Refs. [2], [3], this study uses a frequency range of 1 161

to 1000 kHz. 162

The ladder network model is a widely adopted approach for 163

modeling transformer windings [16], [17], [24]. This model 164

represents the winding as cascaded equivalent units, each 165

comprising passive circuit elements (i.e., R, G, L, and C) 166

and corresponding to a single- or multi-disk winding. Due to 167

the typically uniform structure of the transformer winding, a 168

complete winding can be effectively modeled as a cascade 169

of these repeatedly connected equivalent units. As shown in 170

Fig. 1, L represents the self-inductance of the winding, R 171

represents resistance (i.e., copper loss), Cs characterizes the 172

inter-disk capacitance effect, Gs characterizes the inter-disk 173

leakage current loss, Cg represents the capacitance between a 174
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Fig. 1. The proposed equivalent circuit model of transformer winding,
considering long-distance mutual inductances and capacitances.

winding disk and ground, Gg represents the ground leakage175

current loss, and M represents the mutual inductance between176

different disks.177

At low frequencies, transformer windings exhibit predom-178

inantly inductive characteristics, whereas at high frequencies,179

they display predominantly capacitive characteristics [17].180

Regarding the former, substantial mutual inductance persists181

even between distantly separated disks, owing to the coaxial182

arrangement of the windings. For the latter, whereas most prior183

studies overlooked the long-distance capacitance, this study184

incorporates it to simulate high-frequency FRA characteristics185

as accurately as possible. Besides, it should be noted that186

the proposed model is specific to the high-voltage winding187

phase and does not account for coupling effects between the188

high- and low-voltage windings or among the different phases.189

The exclusion of the low-voltage winding is a consequence of190

the ladder network model simplification detailed in Ref. [24].191

Furthermore, the omission of inter-phase coupling is justified192

by the limited influence on FRA data obtained from the single-193

phase measurement with other windings open-circuited [16],194

[24], [25].195

B. Basic principle of Bayesian optimization196

This study necessitates parameter identification for the197

model depicted in Fig. 1. It is important to note that the198

parameters within each equivalent unit are not identical, result-199

ing in a high-dimensional parameter space. Previous methods200

often simplified this by copying parameters from a single201

unit across all others, thereby reducing the search parameter202

space [18]. However, this approach introduces inaccuracies203

given the inherent variations among individual winding disks.204

Furthermore, conventional intelligent algorithms, such as GA205

and PSO, are unsuitable for such high-dimensional parameter206

identification problems, particularly when interacting many207

times with a complex model. Specifically, these conventional208

methods require millions of model executions during the opti-209

mization process, placing excessive demands on computational210

resources [26]. Therefore, to address this parameter search211

challenge and minimize model executions, this study combines212

BO with specially designed objective functions to obtain an213

optimal set of circuit parameter values.214

BO employs a Gaussian process (GP) to construct a poste-215

rior probability distribution by iteratively combining existing216

observations with their corresponding objective function eval-217

uations. An acquisition function is then used to intelligently218

guide the selection of the subsequent observation most likely 219

to yield the global optimum. Fig. 2 provides an illustrative 220

example of single-objective BO to find the minimum of a given 221

function. 222

C. Details of Two-step modeling 223

This study proposes a two-step modeling method for trans- 224

former winding, with the complete procedure detailed in 225

Algorithm 1: 226

1) Step 1: A three-dimensional (3D) model of the trans- 227

former is constructed in ANSYS Maxwell, incorporating its 228

physical structure and material properties, including insulation 229

oil, pressboard, spacers, tank, and core. Subsequently, FEM 230

is used to determine the values of the circuit parameters, as 231

shown in Fig. 1, with detailed calculations presented in the 232

following section. 233

2) Step 2: An equivalent circuit model is constructed in 234

Simulink. Subsequently, a parameter search space is defined, 235

encompassing the range ±5% around the parameter values de- 236

rived in Step 1. Then, MOBO is employed for parameter iden- 237

tification [27], guided by three specifically designed objective 238

functions, as delineated by Equations (2)-(5). To be specific, 239

Ob1 quantifies the overall fitting accuracy, Ob2 evaluates the 240

similarity between the measured and simulated FRA data [17], 241

and Ob3 is designed to optimize the fitting of resonance points, 242

whose accuracy is closely related to the accuracy of subsequent 243

fault simulations [2], [18]. In addition, the sparse axis-aligned 244

subspace (SAAS) GP [28] is utilized in conjunction with the 245

parallel noise expected hypervolume improvement (qNEHVI) 246

as the acquisition function for MOBO, representing a state- 247

of-the-art (SOTA) approach for high-dimensional optimization 248

problems [26]. 249

Ob1 =

N∑
i=1

(
Tactual (wi)− Tmodel (wi)

Tactual (wi)

)2

(2)

Ob2 =

N∑
i=1

(
Tactual(wi)− Tmodel(wi)

Tactual(wi)

)2

+

β

 ∑N
i=1 (T

∗
actual(wi)T

∗
model(wi))√∑N

w=1 (T
∗
model(wi))

2 ∑N
w=1 (T

∗
actual(wi))

2
+ 1

−1

(3)

T ∗(wi) = |T (wi)| −
1

N

N∑
i=1

|T (wi)| (4)

Ob3 =

NRP∑
iRP=1

(
Tactual (wiRP

)− Tmodel (wiRP
)

Tactual (wiRP
)

)2

(5)

where Tactual and Tmodel are actually measured and model- 250

simulated FRA data, respectively. N is the number of mea- 251

sured and simulated sample points, NRP is the number of 252

measured and simulated resonance points, and β represents a 253

hyperparameter, which is assigned a value of 5 in this study. 254
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Bayesian Optimization for Minimum Search

True function GP mean 95% confidence interval Observations Acquisition function Next evaluation

Fig. 2. Illustration of the Bayesian optimization process to find the minimum of a simple function. A Gaussian process model predicts the function
values (solid blue line) along with associated uncertainties (blue shading) based on previously collected data. Subsequently, an acquisition function
leverages this model to evaluate the potential ”value” of future measurements, thereby balancing exploration and exploitation. The next observation
is then selected by minimizing the acquisition function in the parameter space. This iterative process continues until the optimization objectives are
achieved.

TABLE I
DIMENSIONAL PARAMETERS OF THE EXPERIMENTAL TRANSFORMER

Parameter Value
Iron core diameter (mm) 300

Iron core yoke length (mm) 1390
Iron core yoke height (mm) 1190
Turn to turn spacing (mm) 3

Disk to disk separation (mm) 2 (1-10, 21-30 disks, and 11-20 disks
bottom) and 26 (11-20 disks top)

Tank (mm) 1705× 740× 1415
Number of disks 30

Number of turns per disk 10
Number of parallel 1

High voltage winding Low voltage winding
Inner radius (mm) 421 Inner radius (mm) 316
Outer radius (mm) 500 Outer radius (mm) 349

Height (mm) 520 Height (mm) 87.5

III. EXPERIMENT RESULTS255

A. Experiment settings256

The experimental subject is a specially designed 10 kV257

power transformer, as shown in Fig. 3. Detailed design param-258

eters for this transformer are provided in Table I. Internally,259

the transformer is structured according to the design principles260

of the conventional 110 kV transformer. It features a core-261

type construction, with the high-voltage winding configured262

as a disc-type winding comprising a total of 30 disks. The263

top and bottom sections each consist of 10 disks wound in264

ConductorsConductors

A B C O

Conductors

A B C O

Fig. 3. Internal structure of the specially designed 10 kV transformer.

an interleaved pattern, while the middle section encompasses 265

5 sets of double-disk continuous windings. The low-voltage 266

winding is designed as a layer-type winding, composed of 267

6 layers. Specifically, this study focuses on the A-phase of 268

the high-voltage winding, thereby building a model with 30 269

equivalent units. 270

A 3D transformer model is constructed in ANSYS Maxwell 271

based on physical designs, including considerations for insula- 272

tion materials (such as insulation oil, pressboard, and spacers) 273

as well as the properties of the tank and core, cross-sectional 274

geometry, number of turns, and coil diameter. The built model 275

is illustrated in Fig. 4, and properties of insulation material 276

within the transformer are shown in Table. II. The calculation 277
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Algorithm 1 Two-step modeling method for the transformer
winding.

Input: Objectives fobj = (Ob1 (x) , Ob2 (x) , Ob3 (x));
initial evaluation budget m ≥ 2; total evaluation budget
T > m; data storage set H; initial observation set x1:m,
and evaluations y1:m (optional). // x and y are vector values
that contain multiple parameters (i.e., values of circuit
parameters) and objectives, respectively.
Output: Based on evaluations, manually choose the best
observation xbest, ybest in the Pareto-optimal set. If the
model-based FRA data are not very matched, constrain the
search space to ±5% around xbest and iterate steps 3-10.

1: A transformer model is constructed using ANSYS
Maxwell.

2: The circuit parameters are determined using the FEM.
3: Set the calculated parameters in Step 1 within ±5% as the

bounded search space X, x ∈X.
4: If x1:m, y1:m is not provided, let xt be a Sobol sequence

and let yt = fobj(xt), xt ∈ X, for t = 1, ...,m. //
Construct the initial observation set and get evaluations.

5: For t = m+ 1, . . . , T do
6: Let Ht = {x1:t−1, y1:t−1}.
7: Use Ht to fit SAAS GP.
8: Use QNEHVI to obtain the next observation xt.
9: Evaluate yt = fobj (xt). // Input the observation into

the built model to obtain an evaluation.
10: end

11: return Pareto-optimal set {x1:a, y1:a} .

of these equivalent relative dielectric parameters can refer to278

Ref. [25].279

TABLE II
PROPERTIES OF INSULATING MATERIALS WITHIN THE TRANSFORMER.

Material Relative dielectric constant
Pressboard 4.7

Insulation oil 2.2
Insulating cylinder/ring 4.5

Spacers 4.7

For capacitance calculation, the transformer tank and iron280

core are assigned a zero potential. Each disk is assigned a281

distinct potential, and then the capacitances between the 30282

disks, as well as the ground capacitance of each disk, are283

subsequently computed. Similarly, the inter-disk capacitances284

are calculated using ANSYS electrostatic field analysis, while285

the equivalent longitudinal capacitance is determined based on286

the principle of electric field energy conservation. Specifically,287

in each field simulation, for an n-conductor system, n inde-288

pendent simulations are automatically performed. The energy289

stored in the electric field due to the capacitance between any290

two conductors is then given by [11], [25]:291

Wij =
1

2

∫
Ω

Di × EjdΩ (6)

where Wij represents the energy stored in the electric field292

due to flux lines connecting charges on conductor i to those293

on conductor j, Di denotes the electric flux density associated294

Fig. 4. 3D finite element model of transformer. This study focuses
exclusively on the computed inductance, capacitance, and resistance
parameters for the high-voltage A-phase winding due to the limited
influence from other windings and computational resource restrictions.

with conductor i, and Ej represents the electric field associated 295

with conductor j. Therefore, the capacitance between the 296

conductors i and j is: 297

Cij =
2Wij

V 2
ij

(7)

where Vij denotes the electric potential between the conduc- 298

tors i and j. Related results are presented in Fig. 5. It should 299

be noted that, as illustrated in Table I, the increased axial 300

distance between the 10th to 20th winding disks directly leads 301

to a reduction in their calculated capacitance values compared 302

to other winding disks. 303

Fig. 5. Capacitance value between different disks.

For the determination of inductance parameters, a current 304

excitation is applied to each winding disk, and the self- 305

inductances and mutual inductances between the 30 disks 306

are then computed. The primary motivation for constructing 307

the circuit model is to accurately represent the transformer 308

winding’s frequency response. Given that the frequency range 309

of interest for FRA is above 1 kHz, where the influence of 310

the transformer core is negligible, it is necessary to remove 311
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the iron core from the model when calculating inductance312

parameters [9], [11]. Specifically, to calculate the inductance,313

the average magnetic energy, WAV , should be first calculated314

as [11], [25]:315

WAV =
1

4

∫
V

B ×HdV (8)

where B is the magnetic flux density, H is the magnetic316

field strength, and V is the volume of the conductor. Then,317

the inductance can be calculated from the average magnetic318

energy:319

L =
4WAV

I2Peak

(9)

where Ipeak is the peak winding current. Related results are320

depicted in Fig. 6.321

Fig. 6. Self-inductance and mutual inductance of different disks.

Within a fundamental unit of a ladder network, the resis-322

tance characterizes the inherent resistance of a single disk.323

While this parameter can be determined by formula-based cal-324

culation R = ρ l
S , the resistance obtained via this method rep-325

resents the direct current (DC) resistance. This value assumes a326

uniform current density distribution within the winding under327

a constant DC current, and thus does not account for the skin328

effect or the proximity effect. To enhance the accuracy of329

resistance calculation, this study establishes a two-dimensional330

finite element model of two adjacent winding disks within331

the ANSYS Maxwell eddy current field. This model is based332

on the physical dimensions. A defined current excitation is333

applied to obtain the current density distribution within each334

turn, as illustrated in Fig. 7. Due to the proximity effect,335

a symmetrical current density distribution is observed. The336

currents within the turns exhibit mutual repulsion, effectively337

displacing the moving charges in adjacent conductors towards338

their edges. When considering each turn as a whole, the current339

density distribution also displays a skin effect, concentrated340

along the surface of the conductor. The computed resistance341

parameters for each turn are presented in Fig. 8, with turns342

numbered 1 to 20 from left to right and top to bottom. As343

can be observed, the middle turns (5th, 6th, 15th, and 16th344

turns) exhibit higher resistance values, while the end turns 345

(1st, 10th, 11th, and 20th turns) demonstrate slightly lower 346

resistance values. There is a discernible difference in resistance 347

between the end and middle sections, with a calculated value 348

of 15.46 mΩ at the end and 16.76 mΩ in the middle. The 349

average resistance is 16.3695 mΩ in one equivalent unit. 350

For the determination of electric conductance, which charac- 351

terizes leakage current losses, it is important to note that each 352

turn is wrapped in insulation paper and the entire winding 353

is immersed in transformer insulation oil. Consequently, the 354

resulting leakage current is typically negligible. According to 355

Refs. [9], [11], [16], [17], the electric conductance is generally 356

on the order of MΩ. Therefore, in this study, an electric 357

conductance value of 10 MΩ is adopted, and this parameter 358

is not included in Step 2. 359

Fig. 7. Current density distribution within each turn under the influence
of proximity effect.

0 5 10 15 20
Index of the turn 

0

5

10

15

20

Fig. 8. Equivalent resistance parameters of two adjacent winding disks
(total 20 turns).

It should be noted that conventional modeling approaches 360

typically assume circuit parameters to be frequency-invariant. 361

However, parameters such as resistance and inductance, ex- 362

cluding capacitance, manifest frequency-dependent character- 363

istics under varying excitation frequencies. Given the absence 364

of geometric modifications to the winding structure throughout 365

the simulation process, the mutual inductance coefficients 366

between different winding disks are presumed to remain con- 367

stant. Accordingly, the self-inductance parameters of a repre- 368

sentative winding disk are computed across a range of frequen- 369

cies, thereby yielding the scaling coefficients (i.e., ηfrequency = 370
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Fig. 9. Frequency-dependent characteristics of the resistance and
inductance for a representative winding disk.

Lfrequency/Lbaseline). These coefficients are subsequently applied371

to the inductance matrix via scalar multiplication, facilitating372

the generation of frequency-specific inductance matrices. An373

analogous methodology is employed for resistance parameters.374

Fig. 9 shows the frequency-dependent characteristics of both375

resistance and inductance for a representative winding disk.376

The results presented in Figs. 6-8 are based on computations377

performed at 1 kHz. Thus, to derive L (including M ) and R378

values at varying frequencies, the 1 kHz baseline values are379

scaled by the calculated coefficients ηfrequency, as depicted in380

Fig. 9. Fundamentally, the proposed method entails calculating381

a single set of circuit parameters at 1 kHz, with adjustments382

for other frequencies achieved through multiplication by the383

calculated scaling coefficients ηfrequency.384

B. Comparative experiments385

The equivalent circuit model depicted in Fig. 1 is con-386

structed in Simulink. Subsequently, the frequency response387

fingerprint of the high-voltage A-phase winding is measured388

using a frequency response analyzer (model: TDT6U) [1], and389

the experimental diagram is illustrated in Fig. 10. Following390

the acquisition of the measured frequency response fingerprint,391

these data are used in conjunction with the built model to392

formulate the three objective functions described in Section393

2.3. These objective functions are then minimized through394

an iterative optimization process that involves the interaction395

between the Simulink model and the MOBO implemented396

in Python. The optimized results are presented in Fig. 11.397

Furthermore, Fig. 11 includes single-step modeling results.398

From Fig. 11, it can be seen that: (1) A significant dis-399

crepancy exists between the measured and the simulated FRA400

data derived solely from Step 1. This discrepancy arises due401

to the idealized nature of the FEM and its lack of direct402

interaction with measured data. (2) While utilizing only Step403

2 (i.e., employing optimization algorithms to identify circuit404

model parameters) can yield acceptable results, it is important405

to acknowledge that these results are obtained through iterative406

MOBO. The computational time required for this approach407

is approximately 30 times greater than that of the proposed408

two-step method. (3) The two-step modeling method uses409

High voltage side(10 kV) Low voltage(0.4 kV)

FRA analyzer

Vi(U1(f) )

Vo(U2(f))

Signal

A B C a b cO o

ComputerComputer

Input

Output

(a)

(b)
Fig. 10. Measurement experimental diagram. (a) Measurement wiring
diagram. (b) Actual wiring diagram.
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-100

-80
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-20

0
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ai
n/

dB

Two-step method
Single step 1
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Actual normal FRA

Fig. 11. Results of the two-step and single-step modeling about the
normal winding. Single step 1 and Single step 2 essentially represent
modeling transformer windings using white-box and gray-box models,
respectively. This study focuses on model-based winding fault simu-
lation. Black-box models are excluded from consideration due to their
inherent inability to simulate winding faults.

the results of the first step as a reference for setting the 410

initial parameter search space in Step 2, followed by fine- 411

tuning parameters through the minimization of the objective 412

functions. The former action constrains the search parameter 413

space, while the latter enhances the correlation between the 414

measured and simulated data. However, it should be noted 415

that in comparison to the measured FRA data, the simulated 416

one does not capture the first resonance point, likely due to the 417

exclusion of the iron core’s influence in the modeling process. 418

In the low-frequency range, despite the frequencies reaching 419

the kilohertz range, the excitation effect of the iron core is not 420

entirely negligible. 421

This study presents results for different modeling ap- 422

proaches regarding the normal winding, as illustrated in 423
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Fig. 12. Results of different models about the normal winding.

Fig. 12. The incorporation of long-distance mutual inductance424

and capacitance, along with the use of distinct parameter425

values for each unit, proves beneficial for establishing an426

accurate equivalent circuit model.427

C. DSVs and IDSC simulation based on the built model428

ConductorsConductorsConductors

Conductors

.
..

Inter-disk short circuit

.
..

Disk space variation

...

cap
acito

rs

Conductors

#1

#2

#3
#4

#5
#6

Fig. 13. Simulation wiring diagram for DSVs and IDSCs.

To further validate the accuracy of the proposed model, this429

study compares the simulated winding fault FRA data with430

the corresponding measured FRA data, encompassing inter-431

disk short circuits (IDSCs) and disk space variations (DSVs).432

Regarding IDSCs, experimental validation can be performed433

by directly short-circuiting the conductors, as illustrated in434

Fig. 13. Different fault locations are achieved by varying the435

pairs of short-circuited conductors [1]. For instance, IDSC-436

#1-#2 denotes an IDSC between conductors #1 and #2. In the437

built model, such IDSC faults are simulated by short-circuiting438

the equivalent units associated with the corresponding disks.439

A comparison between the simulated and measured FRA data440

is presented in Fig. 14.441

DSVs are characterized by a reduction in the inter-disk442

spacing, which predominantly manifests as an increase in443

inter-disk capacitance within the equivalent circuit model.444

This alteration is equivalent to introducing parallel capacitors445

between adjacent disks [1], thereby providing an alternative446

current pathway through the winding and perturbing the dis-447

tribution of the winding’s leakage magnetic field, as depicted448
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Fig. 14. Several FRA data of IDSCs obtained from actual measurement
and model-based simulation. (a). IDSC-#1-#2. (b) IDSC-#1-#6. (c).
IDSC-#2-#3. (d). IDSC-#2-#5. (e). IDSC-#3-#6. (f). IDSC-#5-#6.

in Fig. 13. For instance, DSV-#1-#2-57pF denotes a DSV be- 449

tween conductors #1 and #2 achieved via the insertion of a 57 450

pF parallel capacitor. In the built model, DSVs are simulated 451

by incorporating a capacitor between the corresponding units. 452

A comparison between the simulated and measured FRA data 453

is provided in Fig. 15. 454

As observed in Figs. 14 and 15, the simulated IDSCs and 455

DSVs, derived from the built model, exhibit a reasonable 456

degree of consistency with actual measurements within the 457

frequency ranges of 1–600 kHz and 1–900 kHz, respectively. 458

This agreement further supports the practical applicability of 459

the proposed model. However, the consistency is diminished 460

in the high-frequency range, which may be attributed to an 461

incomplete representation of stray capacitance. Furthermore, 462

numerous studies, as evidenced by Refs. [16], [29], [30], 463

have demonstrated that resonance points within the low- and 464

mid-frequency ranges contain the most fault information. The 465

model exhibits small deviations from the measured fault sig- 466

natures in the low- and mid-frequency ranges. Consequently, it 467

provides a valuable reference for decision-making in practical 468

fault detection. 469

It should be noted that the simulation results presented in 470
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Fig. 15. Several FRA data of DSVs obtained from actual measurement and model-based simulation. (a). DSV-#1-#2-50pF. (b). DSV-#1-#2-67pF.
(c). DSV-#1-#2-200pF. (d). DSV-#2-#3-50pF. (e). DSV-#2-#3-67pF. (f).DSV-#2-#3-100pF. (g). DSV-#2-#3-200pF. (h). DSV-#3-#4-50pF.

Figs. 14 and 15 are based on the model built in the previous471

section, where only short circuits or parallel capacitors are472

introduced, leaving the circuit parameters unmodified.473

IV. DISCUSSION AND LIMITATION474

Currently, numerous studies have investigated transformer475

winding modeling using three types of models: black-box,476

white-box, and gray-box models. In contrast to black-box477

models [14], [15], the proposed model incorporates physical478

interpretations. Indeed, the proposed method combines the479

advantages of both white-box and gray-box models, leveraging480

the former to reduce the computational burden associated481

with parameter space exploration and the latter to mitigate482

the discrepancy between measured and simulated frequency483

response fingerprints. Compared to previous studies on white-484

box models [9], [11], [25], the proposed method demonstrates485

closer agreement between the simulated and measured FRA486

data under normal and faulty conditions. Furthermore, the487

identified parameters exhibit greater physical significance than488

those obtained by directly applying optimization algorithms to489

a gray-box model with an unrestricted parameter space [16]–490

[20].491

During the transformer periodic inspections, FRA remains492

the predominant diagnostic method. However, its accuracy is493

often constrained by the subjective expertise of maintenance494

personnel [2]. The built model could address this limitation495

by providing an objective interpretive framework, such as496

elucidating FRA data across diverse fault types and locations497

[9], [11]. Besides, while data-driven methods leverage FRA498

data to develop intelligent fault diagnosis models [13], their499

robustness is limited by the paucity of practical fault data [1].500

By exploiting physical simulations within the built model,501

synthetic datasets can be generated to augment the training502

dataset, thereby fostering a synergistic integration of physical 503

models and data-driven methods that enhance generalization 504

and predictive accuracy. 505

While the proposed method demonstrates advantages in 506

terms of model performance and physical interpretability, it 507

still has several limitations: 508

1) This study focuses solely on the A-phase of the high- 509

voltage winding and does not account for the coupling 510

between the high- and low-voltage windings, nor the 511

coupling between the three phases. This is attributed 512

to the limited influence of these coupling effects on 513

the measured single-phase FRA data. Furthermore, the 514

computational complexity and associated time require- 515

ments pose a significant challenge in the development 516

of a complete FEM model that considers these coupling 517

effects. However, given that conventional offline FRA 518

for winding fault diagnosis is typically performed phase 519

by phase, the single-winding model developed in this 520

study offers practical applicability. 521

2) The scope of winding faults simulated in this study is 522

limited. It is difficult to use circuit-based models to 523

emulate various mechanical faults due to the difficulty in 524

quantifying the associated circuit parameters for certain 525

complex deformations or components, such as radial 526

deformation or bushing conditions [31], [32]. 527

V. CONCLUSION 528

This study proposes a two-step broadband equivalent circuit 529

modeling method for power transformer winding based on 530

FRA and BO. Based on the experimental and comparative 531

results, the following conclusions are drawn: 532

1) The proposed model, which employs distinct parameter 533

values for each unit and incorporates long-distance mu- 534
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tual inductance and capacitance, demonstrates superior535

agreement with measured FRA data from a physical536

transformer.537

2) To address the challenges associated with high-538

dimensional parameter identification, this study employs539

FEM to derive an initial parameter set in Step 1. This540

precalculation significantly reduces the computational541

time required for subsequent fine-tuning of circuit pa-542

rameters using optimization algorithms based on mea-543

sured FRA data in Step 2. Furthermore, this method fa-544

cilitates data interaction between the measured data and545

the built model, improving the possibility of searching546

for a set of feasible solutions.547

3) To validate the model’s performance, several common548

winding mechanical faults are simulated. The simulated549

FRA changing trends exhibit strong agreement with the550

measured data, thereby indirectly confirming a robust551

mapping relationship between the model and the actual552

transformer. Furthermore, simulated FRA data can serve553

as a valuable reference for subsequent fault diagnosis.554
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power transformer winding model,” in 2022 7th International Advanced 615

Research Workshop on Transformers (ARWtr), 2022, pp. 18–23. 616

[16] F. Ren, H. Zhang, Y. Liu, S. Ji, and Q. Li, “Ladder network synthesis 617

in wide frequency range for transformer winding from its driving-point 618

admittance data,” IEEE Transactions on Power Delivery, vol. 37, no. 3, 619

pp. 1370–1379, 2022. 620

[17] R. Aghmasheh, V. Rashtchi, and E. Rahimpour, “Gray box modeling of 621

power transformer windings for transient studies,” IEEE Transactions 622

on Power Delivery, vol. 32, no. 5, pp. 2350–2359, 2017. 623

[18] Z. Zhao, Y. Chen, Y. Yu, M. Han, C. Tang, and C. Yao, “Equivalent 624

broadband electrical circuit of synchronous machine winding for fre- 625

quency response analysis based on gray box model,” IEEE Transactions 626

on Energy Conversion, vol. 36, no. 4, pp. 3512–3521, 2021. 627

[19] Y. Chen, X. Ji, and Z. Zhao, “Synchronous machine winding modeling 628

method based on broadband characteristics,” Applied Sciences, vol. 11, 629

no. 10, 2021. 630

[20] A. Abu-Siada, M. I. Mosaad, D. Kim, and M. F. El-Naggar, “Estimating 631

power transformer high frequency model parameters using frequency 632

response analysis,” IEEE Transactions on Power Delivery, vol. 35, no. 3, 633

pp. 1267–1277, 2020. 634

[21] “Power transformers-part 18: Measurement of frequency response. in- 635

ternational standard, iec 60076-18,” 2012. 636

[22] “Ieee guide for the application and interpretation of frequency response 637

analysis for oil-immersed transformers,” IEEE Std C57.149-2012, pp. 638

1–72, 2013. 639

[23] P. Picher, M. Lachman, P. Patel et al., “Advances in the interpreta- 640

tion of transformer frequency response analysis (fra),” Cigre Technical 641

brochure, Brochure, vol. 812, 2020. 642

[24] M. M. Shabestary, A. J. Ghanizadeh, G. B. Gharehpetian, and M. Agha- 643

Mirsalim, “Ladder network parameters determination considering non- 644

dominant resonances of the transformer winding,” IEEE Transactions 645

on Power Delivery, vol. 29, no. 1, pp. 108–117, 2014. 646

[25] X. Zhao, C. Yao, A. Abu-Siada, and R. Liao, “High frequency electric 647

circuit modeling for transformer frequency response analysis studies,” 648

International Journal of Electrical Power Energy Systems, vol. 111, pp. 649

351–368, 2019. 650

[26] Y. Chen, B. Qin, X. Liu, W. Wang, and Y. Liao, “Start-to-end modeling 651

and transmission efficiency optimization for a cyclotron-based proton 652

therapy beamline,” Nuclear Engineering and Technology, vol. 56, no. 10, 653

pp. 4365–4374, 2024. 654

[27] D. Eriksson, P. I.-J. Chuang, S. Daulton, P. Xia, A. Shrivastava, A. Babu, 655

S. Zhao, A. Aly, G. Venkatesh, and M. Balandat, “Latency-aware neural 656

architecture search with multi-objective bayesian optimization,” arXiv 657

preprint arXiv:2106.11890, 2021. 658

[28] D. Eriksson and M. Jankowiak, “High-dimensional bayesian optimiza- 659

tion with sparse axis-aligned subspaces,” in Uncertainty in Artificial 660

Intelligence. PMLR, 2021, pp. 493–503. 661

[29] Y. Chen, Z. Zhao, Y. Yu, W. Wang, and C. Tang, “Understanding ifra 662

for detecting synchronous machine winding short circuit faults based on 663

image classification and smooth grad-cam++,” IEEE Sensors Journal, 664

vol. 23, no. 3, pp. 2422–2432, 2023. 665

[30] Z. Zhao, C. Yao, C. Li, and S. Islam, “Detection of power transformer 666

winding deformation using improved fra based on binary morphology 667

and extreme point variation,” IEEE Transactions on Industrial Electron- 668

ics, vol. 65, no. 4, pp. 3509–3519, 2018. 669

[31] Z. Zhao, C. Yao, X. Zhao, N. Hashemnia, and S. Islam, “Impact of 670

capacitive coupling circuit on online impulse frequency response of a 671

power transformer,” IEEE Transactions on Dielectrics and Electrical 672

Insulation, vol. 23, no. 3, pp. 1285–1293, 2016. 673

[32] A. Abu-Siada, N. Hashemnia, S. Islam, and M. A. Masoum, “Un- 674

derstanding power transformer frequency response analysis signatures,” 675

IEEE Electrical Insulation Magazine, vol. 29, no. 3, pp. 48–56, 2013. 676

This article has been accepted for publication in IEEE Transactions on Dielectrics and Electrical Insulation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDEI.2025.3635100

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on November 24,2025 at 02:17:24 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Methodology
	Basic principle of FRA and proposed model
	Basic principle of Bayesian optimization
	Details of Two-step modeling

	Experiment results
	Experiment settings
	Comparative experiments
	DSVs and IDSC simulation based on the built model

	Discussion and Limitation
	Conclusion
	References

