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Abstract— Frequency response analysis (FRA) is a well-
established technique to detect transformer winding defor-
mation faults. Its diagnostic application is based on the
principle that a transformer winding can be represented
by an equivalent circuit consisting of resistors, inductors,
and capacitors. However, rapidly obtaining an accurate and
physically meaningful broadband equivalent circuit model
for windings remains challenging, limiting both the under-
standing of fault mechanisms and the generation of data for
data-driven fault diagnosis methods. To address these dif-
ficulties, this study proposes a two-step broadband equiv-
alent circuit modeling method for the transformer winding
based on FRA and Bayesian optimization (BO), considering
long-distance mutual inductances and capacitances. The
proposed method is validated in a specially designed 10
kV power transformer. Subsequently, two kinds of wind-
ing deformation faults, including inter-disk short circuits
(IDSCs) and disk space variations (DSVs), are simulated
on the basis of the built model and compared with the
experimental FRA data. The validation results confirm the
accuracy and effectiveness of the proposed method in the
construction of the equivalent winding circuit.

Index Terms— Winding modeling, broadband equivalent
circuit, frequency response analysis, Bayesian optimiza-
tion.
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[. INTRODUCTION

OWER transformers are critical components within the

power system, playing an essential role in power trans-
mission, conversion, and voltage regulation [1]-[3]. Their
ability to manipulate voltage and current mitigates fluctuations
that degrade power quality or cause equipment failure, enhanc-
ing the stability of the overall power system. Consequently,
given the critical and costly nature of transformers, their
malfunctions not only incur substantial maintenance expenses
but also significantly compromise the reliability and economic
efficiency of the power system [4], [5]. Therefore, ensuring
the reliable operation of power transformers is important for
maintaining the safe and stable functioning of the power
system [6].

Winding deformation is a common fault in power trans-
formers, often resulting from short-circuit (SC) currents that
generate substantial electromagnetic forces. These forces can
cause irreversible deformation of the transformer windings.
As reported by the International Council on Large Electric
Systems (CIGRE), winding deformation accounts for approx-
imately 30% of transformer faults. In practice, assessing
winding conditions requires draining the transformer oil for
internal visual inspection, which is time-consuming and low-
efficiency. To overcome these difficulties, researchers have
developed various diagnostic methods using various measured
signals, including short circuit impedance (SCI) [7], low volt-
age impulse (LVI) [8], frequency response analysis (FRA) [9]-
[11], etc. Among these, FRA has gained the most popularity
among researchers and related maintenance personnel as an
effective technique for detecting winding deformation because
of its precision, simplicity, cost-effectiveness, efficacy, and
non-destructive nature. FRA is an offline diagnostic technique
used to detect transformer winding faults through graphical
analysis, which is currently a widely adopted method in
periodic inspection of transformer windings, phase by phase
[2], [3]. Specifically, FRA employs the frequency response
fingerprint, also referred to as the transfer function or FRA
data, to interpret winding deformation faults.

The frequency response fingerprint of transformer windings
can be determined through both direct measurement and
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simulation using equivalent circuit models. In simulations,
these models are developed to investigate the influence of
various physical deformations on the winding’s frequency re-
sponse fingerprint, offering a more efficient and cost-effective
approach compared to destructive physical experiments. Con-
sequently, an accurate equivalent circuit model facilitates cost-
free simulations of transformer winding faults [9], [11] and
enables the generation of data for data-driven fault diagnosis
methods [1], [12], [13]. Furthermore, the interpretation of
frequency response fingerprints for winding fault diagnosis
currently relies heavily on expert experience, which means that
an accurate winding model can help maintenance personnel
improve the objectivity of their judgments.

Currently, there are three common methods for establishing
FRA-based winding equivalent circuit models:

1) Black-box models use multiple RLC units to simulate
resonance points in their frequency response finger-
prints, without requiring details of the physical structure
of the transformer [14], [15]. While yielding similar
frequency response fingerprints, this approach provides
information lacking physical significance, rendering it
unsuitable for investigating the influence of transformer
winding faults.

2) White-box models, usually constructed via finite ele-
ment method (FEM) based on the transformer’s physical
structure and material properties, directly derive the fre-
quency response fingerprints from the electromagnetic
field [9], [11]. However, this approach is computation-
ally intensive and time-consuming, but it often yields
simulated data that deviates significantly from measured
data.

3) Grey-box models are a variant of the black-box mod-
els, which first construct an equivalent circuit using
prior physical knowledge and then identify parameters
through optimization algorithms, such as genetic al-
gorithm (GA) and particle swarm optimization (PSO),
based on measured frequency response fingerprints [16]—
[20]. However, this parameter identification process fre-
quently necessitates extensive adjustments to the search
parameter space to obtain optimal parameters that yield
a close match with the measured data.

Therefore, this study proposes a two-step broadband equiv-
alent circuit modeling method for transformer windings based
on FRA and Bayesian optimization (BO) to address the
drawbacks mentioned above. The main contributions are as
follows:

1) We propose a two-step broadband equivalent circuit
modeling method for transformer windings, offering a
generalizable approach applicable to other transform-
ers. The proposed model, implemented in Simulink,
simulates the frequency response of both healthy and
faulty transformer windings while retaining physical
significance.

2) Unlike previous studies that employed an unrestricted
parameter space, we use a white-box model to generate
a set of feasible parameter solutions, which serve as a
reference for subsequent parameter identification. This

approach substantially increases both the probability and
speed of obtaining viable solutions.

3) In contrast to previous studies employing conventional
optimization algorithms with mean squared error (MSE)
as a fitness function, we adopt a sample-efficient multi-
objective Bayesian algorithm (MOBO), utilizing three
common fitness functions as distinct optimization objec-
tives. BO-based algorithms reduce computational costs
by minimizing the number of model executions required
for parameter identification.

The remainder of this study is organized as follows: Section

II introduces the methodology, Section III presents the results,
Section IV presents the discussion and limitations, and Section
V provides the conclusions.

[I. METHODOLOGY
A. Basic principle of FRA and proposed model

Under high-frequency excitation, typically above 1 kHz, the
transformer core exhibits negligible excitation effects, allowing
the winding to be represented as a passive linear two-port
network characterized by distributed parameters, including
resistors, inductors, and capacitors [17]. In practice, sinusoidal
signals R;, (w) with frequencies ranging from 1 kHz to 1 MHz
are applied to the input terminal of the winding, and the corre-
sponding response signals Eout(w) are measured at the output
terminal, yielding the frequency response fingerprint 7T'(w), as
defined in Equation (T). The condition of the winding, whether
healthy or faulty, is characterized by this frequency response
fingerprint. Specifically, the distributed parameters are influ-
enced by the geometric dimensions of the winding. Therefore,
any winding deformation alters these parameters, which causes
shifts in the resonance points, thereby changing the frequency
response fingerprint. By comparing the measured FRA data
with a baseline (healthy) fingerprint, maintenance personnel
can analyze these variations to assess the condition of the
winding [2], [3].

—

R,
T(w) = 201logy, Rf)m(:j)

dB (1)

where Ry, (w) and Eout(w) are excitation and response signals,
and T'(w) is the frequency response fingerprint (amplitude
versus frequency). According to existing FRA standards [21]-
[23] and Refs. [2], [3], this study uses a frequency range of 1
to 1000 kHz.

The ladder network model is a widely adopted approach for
modeling transformer windings [16], [17], [24]. This model
represents the winding as cascaded equivalent units, each
comprising passive circuit elements (i.e., R, G, L, and C)
and corresponding to a single- or multi-disk winding. Due to
the typically uniform structure of the transformer winding, a
complete winding can be effectively modeled as a cascade
of these repeatedly connected equivalent units. As shown in
Fig. L represents the self-inductance of the winding, R
represents resistance (i.e., copper loss), Cs characterizes the
inter-disk capacitance effect, G5 characterizes the inter-disk
leakage current loss, C, represents the capacitance between a
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Fig. 1. The proposed equivalent circuit model of transformer winding,
considering long-distance mutual inductances and capacitances.

winding disk and ground, G, represents the ground leakage
current loss, and M represents the mutual inductance between
different disks.

At low frequencies, transformer windings exhibit predom-
inantly inductive characteristics, whereas at high frequencies,
they display predominantly capacitive characteristics [17].
Regarding the former, substantial mutual inductance persists
even between distantly separated disks, owing to the coaxial
arrangement of the windings. For the latter, whereas most prior
studies overlooked the long-distance capacitance, this study
incorporates it to simulate high-frequency FRA characteristics
as accurately as possible. Besides, it should be noted that
the proposed model is specific to the high-voltage winding
phase and does not account for coupling effects between the
high- and low-voltage windings or among the different phases.
The exclusion of the low-voltage winding is a consequence of
the ladder network model simplification detailed in Ref. [24].
Furthermore, the omission of inter-phase coupling is justified
by the limited influence on FRA data obtained from the single-
phase measurement with other windings open-circuited [16],
[24], [25].

B. Basic principle of Bayesian optimization

This study necessitates parameter identification for the
model depicted in Fig. It is important to note that the
parameters within each equivalent unit are not identical, result-
ing in a high-dimensional parameter space. Previous methods
often simplified this by copying parameters from a single
unit across all others, thereby reducing the search parameter
space [18]. However, this approach introduces inaccuracies
given the inherent variations among individual winding disks.
Furthermore, conventional intelligent algorithms, such as GA
and PSO, are unsuitable for such high-dimensional parameter
identification problems, particularly when interacting many
times with a complex model. Specifically, these conventional
methods require millions of model executions during the opti-
mization process, placing excessive demands on computational
resources [26]. Therefore, to address this parameter search
challenge and minimize model executions, this study combines
BO with specially designed objective functions to obtain an
optimal set of circuit parameter values.

BO employs a Gaussian process (GP) to construct a poste-
rior probability distribution by iteratively combining existing
observations with their corresponding objective function eval-
uations. An acquisition function is then used to intelligently

guide the selection of the subsequent observation most likely
to yield the global optimum. Fig. 2] provides an illustrative
example of single-objective BO to find the minimum of a given
function.

C. Details of Two-step modeling

This study proposes a two-step modeling method for trans-
former winding, with the complete procedure detailed in
Algorithm 1:

1) Step 1: A three-dimensional (3D) model of the trans-
former is constructed in ANSYS Maxwell, incorporating its
physical structure and material properties, including insulation
oil, pressboard, spacers, tank, and core. Subsequently, FEM
is used to determine the values of the circuit parameters, as
shown in Fig. [T} with detailed calculations presented in the
following section.

2) Step 2: An equivalent circuit model is constructed in
Simulink. Subsequently, a parameter search space is defined,
encompassing the range +5% around the parameter values de-
rived in Step 1. Then, MOBO is employed for parameter iden-
tification [27], guided by three specifically designed objective
functions, as delineated by Equations (2)-(3). To be specific,
Ob; quantifies the overall fitting accuracy, Ob, evaluates the
similarity between the measured and simulated FRA data [17],
and Obj is designed to optimize the fitting of resonance points,
whose accuracy is closely related to the accuracy of subsequent
fault simulations [2], [18]. In addition, the sparse axis-aligned
subspace (SAAS) GP [28] is utilized in conjunction with the
parallel noise expected hypervolume improvement (QNEHVI)
as the acquisition function for MOBO, representing a state-
of-the-art (SOTA) approach for high-dimensional optimization
problems [26].

N 2
Toctual (wz) — Trnodel (wz))
Ob, = 2
! ; ( Tactual (wz) ( )
N 2
Tactual (wz) - Tmodel(wi))
Oby =
2 ; ( Tactual(wi) +
N * . * .
B — Zi:l (Tactual (;Ul)];]model(wl)) - +1
\/Zw:l (T;wdel (wz)) Zw:l (T;ctual (wl))
(3)
1 N
T (wi) = |[T(wi)l = > T (ws) 4)
i=1

Ngrp 2
Obg = Z (Tactual (szp) Trodel (szp)> (5)

inp=1 Tactual (wiRp)

where Tyctnqr and Thnode; are actually measured and model-
simulated FRA data, respectively. N is the number of mea-
sured and simulated sample points, Npp is the number of
measured and simulated resonance points, and 3 represents a
hyperparameter, which is assigned a value of 5 in this study.
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Iteration 1 Bayesian Optimization for Minimum Search
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lllustration of the Bayesian optimization process to find the minimum of a simple function. A Gaussian process model predicts the function

values (solid blue line) along with associated uncertainties (blue shading) based on previously collected data. Subsequently, an acquisition function
leverages this model to evaluate the potential "value” of future measurements, thereby balancing exploration and exploitation. The next observation

is then selected by minimizing the acquisition function in the parameter space. This iterative process continues until the optimization objectives are

achieved.

TABLE |
DIMENSIONAL PARAMETERS OF THE EXPERIMENTAL TRANSFORMER
Parameter Value
Iron core diameter (mm) 300
Iron core yoke length (mm) 1390
Iron core yoke height (mm) 1190
Turn to turn spacing (mm) 3

Disk to disk separation (mm)

Tank (mm)
Number of disks
Number of turns per disk
Number of parallel

2 (1-10, 21-30 disks, and 11-20 disks
bottom) and 26 (11-20 disks top)
1705 x 740 x 1415
30
10
1

High voltage winding

Low voltage winding

Inner radius (mm) 421 Inner radius (mm) 316
Outer radius (mm) 500 Outer radius (mm) 349
Height (mm) 520 Height (mm) 87.5

[1l. EXPERIMENT RESULTS

A. Experiment settings

The experimental subject is a specially designed 10 kV
power transformer, as shown in Fig. [3] Detailed design param-
eters for this transformer are provided in Table [} Internally,
the transformer is structured according to the design principles
of the conventional 110 kV transformer. It features a core-
type construction, with the high-voltage winding configured
as a disc-type winding comprising a total of 30 disks. The
top and bottom sections each consist of 10 disks wound in

| Ave e g

o
e

Fig. 3. Internal structure of the specially designed 10 kV transformer.

an interleaved pattern, while the middle section encompasses
5 sets of double-disk continuous windings. The low-voltage
winding is designed as a layer-type winding, composed of
6 layers. Specifically, this study focuses on the A-phase of
the high-voltage winding, thereby building a model with 30
equivalent units.

A 3D transformer model is constructed in ANSYS Maxwell
based on physical designs, including considerations for insula-
tion materials (such as insulation oil, pressboard, and spacers)
as well as the properties of the tank and core, cross-sectional
geometry, number of turns, and coil diameter. The built model
is illustrated in Fig. [ and properties of insulation material
within the transformer are shown in Table. [[Il The calculation
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Algorithm 1 Two-step modeling method for the transformer
winding.
Input: Objectives fop; = (Obi (z),0bs (z),0b3 (2));
initial evaluation budget m > 2; total evaluation budget
T > m; data storage set H; initial observation set x1..,,
and evaluations y1.,,, (optional). // x and y are vector values
that contain multiple parameters (i.e., values of circuit
parameters) and objectives, respectively.
Output: Based on evaluations, manually choose the best
observation Tpest, Ypest in the Pareto-optimal set. If the
model-based FRA data are not very matched, constrain the
search space to £5% around x5 and iterate steps 3-10.

1: A transformer model is constructed using ANSYS
Maxwell.
2: The circuit parameters are determined using the FEM.
3: Set the calculated parameters in Step 1 within £5% as the
bounded search space X, r €X.
4: If 21.m, Y1.m 1s not provided, let x; be a Sobol sequence
and let y, = fopi(ze), o € X, for t = 1,...,m. //
Construct the initial observation set and get evaluations.
Fort=m+1,...,T do
Let Hy = {141, Y1:6-1}-
Use H; to fit SAAS GP.
Use QNEHVI to obtain the next observation x;.
Evaluate y; = fop; (x¢). // Input the observation into
the built model to obtain an evaluation.
10: end
return Pareto-optimal set {%1.q,Y1.q} -

R

of these equivalent relative dielectric parameters can refer to
Ref. [25].

TABLE I
PROPERTIES OF INSULATING MATERIALS WITHIN THE TRANSFORMER.

Material Relative dielectric constant
Pressboard 4.7
Insulation oil 2.2
Insulating cylinder/ring 4.5
Spacers 4.7

For capacitance calculation, the transformer tank and iron
core are assigned a zero potential. Each disk is assigned a
distinct potential, and then the capacitances between the 30
disks, as well as the ground capacitance of each disk, are
subsequently computed. Similarly, the inter-disk capacitances
are calculated using ANSYS electrostatic field analysis, while
the equivalent longitudinal capacitance is determined based on
the principle of electric field energy conservation. Specifically,
in each field simulation, for an n-conductor system, n inde-
pendent simulations are automatically performed. The energy
stored in the electric field due to the capacitance between any
two conductors is then given by [11], [25]:

2 Ja
where W;; represents the energy stored in the electric field
due to flux lines connecting charges on conductor 7 to those
on conductor j, D; denotes the electric flux density associated

500 1e+03 (mm)

Fig. 4. 3D finite element model of transformer. This study focuses
exclusively on the computed inductance, capacitance, and resistance
parameters for the high-voltage A-phase winding due to the limited
influence from other windings and computational resource restrictions.

with conductor ¢, and E; represents the electric field associated
with conductor j. Therefore, the capacitance between the

conductors ¢ and j is:
= T2
v

where V; denotes the electric potential between the conduc-
tors ¢ and j. Related results are presented in Fig. [5] It should
be noted that, as illustrated in Table [[, the increased axial
distance between the 10th to 20th winding disks directly leads
to a reduction in their calculated capacitance values compared
to other winding disks.

@)

800
600
400

200

Capacitance value/pF

Fig. 5. Capacitance value between different disks.

For the determination of inductance parameters, a current
excitation is applied to each winding disk, and the self-
inductances and mutual inductances between the 30 disks
are then computed. The primary motivation for constructing
the circuit model is to accurately represent the transformer
winding’s frequency response. Given that the frequency range
of interest for FRA is above 1 kHz, where the influence of
the transformer core is negligible, it is necessary to remove
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the iron core from the model when calculating inductance
parameters [9], [11]. Specifically, to calculate the inductance,
the average magnetic energy, W4y, should be first calculated
as [11], [25]:

1
WAV:*/BXHCZV (8)
4 |4

where B is the magnetic flux density, H is the magnetic
field strength, and V' is the volume of the conductor. Then,
the inductance can be calculated from the average magnetic
energy:

_ AWay

L =
Il%eak

)

where Ipqp is the peak winding current. Related results are
depicted in Fig. [6]

_ 1oo
._5 _
5 50
2
=
2]
=]
R=E L
0
Y, 10 L
o (S
r 20 A
e 20 .@;\o%&
iy, 0 e
%, o
é?or. 30 @5}-0
-{5;{ A\

Fig. 6. Self-inductance and mutual inductance of different disks.

Within a fundamental unit of a ladder network, the resis-
tance characterizes the inherent resistance of a single disk.
While this parameter can be determined by formula-based cal-
culation R = pé, the resistance obtained via this method rep-
resents the direct current (DC) resistance. This value assumes a
uniform current density distribution within the winding under
a constant DC current, and thus does not account for the skin
effect or the proximity effect. To enhance the accuracy of
resistance calculation, this study establishes a two-dimensional
finite element model of two adjacent winding disks within
the ANSYS Maxwell eddy current field. This model is based
on the physical dimensions. A defined current excitation is
applied to obtain the current density distribution within each
turn, as illustrated in Fig. [7} Due to the proximity effect,
a symmetrical current density distribution is observed. The
currents within the turns exhibit mutual repulsion, effectively
displacing the moving charges in adjacent conductors towards
their edges. When considering each turn as a whole, the current
density distribution also displays a skin effect, concentrated
along the surface of the conductor. The computed resistance
parameters for each turn are presented in Fig. [8] with turns
numbered 1 to 20 from left to right and top to bottom. As
can be observed, the middle turns (5th, 6th, 15th, and 16th

turns) exhibit higher resistance values, while the end turns
(1st, 10th, 11th, and 20th turns) demonstrate slightly lower
resistance values. There is a discernible difference in resistance
between the end and middle sections, with a calculated value
of 15.46 m) at the end and 16.76 mf) in the middle. The
average resistance is 16.3695 mf) in one equivalent unit.

For the determination of electric conductance, which charac-
terizes leakage current losses, it is important to note that each
turn is wrapped in insulation paper and the entire winding
is immersed in transformer insulation oil. Consequently, the
resulting leakage current is typically negligible. According to
Refs. [9], [11], [16], [17], the electric conductance is generally
on the order of M. Therefore, in this study, an electric
conductance value of 10 M) is adopted, and this parameter
is not included in Step 2.

30 (mm)

Fig. 7. Current density distribution within each turn under the influence
of proximity effect.
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o
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I
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Fig. 8. Equivalent resistance parameters of two adjacent winding disks
(total 20 turns).

It should be noted that conventional modeling approaches
typically assume circuit parameters to be frequency-invariant.
However, parameters such as resistance and inductance, ex-
cluding capacitance, manifest frequency-dependent character-
istics under varying excitation frequencies. Given the absence
of geometric modifications to the winding structure throughout
the simulation process, the mutual inductance coefficients
between different winding disks are presumed to remain con-
stant. Accordingly, the self-inductance parameters of a repre-
sentative winding disk are computed across a range of frequen-
cies, thereby yielding the scaling coefficients (i.e., Nfrequency =
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Fig. 9.  Frequency-dependent characteristics of the resistance and
inductance for a representative winding disk.

Lirequency / Libaseline)- These coefficients are subsequently applied
to the inductance matrix via scalar multiplication, facilitating
the generation of frequency-specific inductance matrices. An
analogous methodology is employed for resistance parameters.
Fig. 0] shows the frequency-dependent characteristics of both
resistance and inductance for a representative winding disk.
The results presented in Figs. [B]f§] are based on computations
performed at 1 kHz. Thus, to derive L (including M) and R
values at varying frequencies, the 1 kHz baseline values are
scaled by the calculated coefficients 7gequency, as depicted in
Fig.[9] Fundamentally, the proposed method entails calculating
a single set of circuit parameters at 1 kHz, with adjustments
for other frequencies achieved through multiplication by the
calculated scaling coefficients Ngequency-

B. Comparative experiments

The equivalent circuit model depicted in Fig. [T] is con-
structed in Simulink. Subsequently, the frequency response
fingerprint of the high-voltage A-phase winding is measured
using a frequency response analyzer (model: TDT6U) [1], and
the experimental diagram is illustrated in Fig. [I0] Following
the acquisition of the measured frequency response fingerprint,
these data are used in conjunction with the built model to
formulate the three objective functions described in Section
2.3. These objective functions are then minimized through
an iterative optimization process that involves the interaction
between the Simulink model and the MOBO implemented
in Python. The optimized results are presented in Fig. [T}
Furthermore, Fig. [TT] includes single-step modeling results.

From Fig. [[1] it can be seen that: (1) A significant dis-
crepancy exists between the measured and the simulated FRA
data derived solely from Step 1. This discrepancy arises due
to the idealized nature of the FEM and its lack of direct
interaction with measured data. (2) While utilizing only Step
2 (i.e., employing optimization algorithms to identify circuit
model parameters) can yield acceptable results, it is important
to acknowledge that these results are obtained through iterative
MOBO. The computational time required for this approach
is approximately 30 times greater than that of the proposed
two-step method. (3) The two-step modeling method uses

High voltage side(10 kV) Signal Low voltage(0.4 kV)
Vo) T x L

Output
FRA analyzer
B

A ck ol [akbLck o

Vi(Ui(f))

Computer

(b)

Fig. 10. Measurement experimental diagram. (a) Measurement wiring
diagram. (b) Actual wiring diagram.

m
o
=
'®
O
= =Two-step method
80t Singlestep 1 ]
B - = =Singlestep 2
—— Actual normal FRA
-100 L L L L
0 200 400 600 800 1000
Frequency/kHz
Fig. 11. Results of the two-step and single-step modeling about the

normal winding. Single step 1 and Single step 2 essentially represent
modeling transformer windings using white-box and gray-box models,
respectively. This study focuses on model-based winding fault simu-
lation. Black-box models are excluded from consideration due to their
inherent inability to simulate winding faults.

the results of the first step as a reference for setting the
initial parameter search space in Step 2, followed by fine-
tuning parameters through the minimization of the objective
functions. The former action constrains the search parameter
space, while the latter enhances the correlation between the
measured and simulated data. However, it should be noted
that in comparison to the measured FRA data, the simulated
one does not capture the first resonance point, likely due to the
exclusion of the iron core’s influence in the modeling process.
In the low-frequency range, despite the frequencies reaching
the kilohertz range, the excitation effect of the iron core is not
entirely negligible.

This study presents results for different modeling ap-
proaches regarding the normal winding, as illustrated in
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Fig. 12. Results of different models about the normal winding.

Fig.[T2] The incorporation of long-distance mutual inductance
and capacitance, along with the use of distinct parameter
values for each unit, proves beneficial for establishing an
accurate equivalent circuit model.

C. DSVs and IDSC simulation based on the built model

Conductors

Inter-disk short circuit

Conductors

—o— l

—o—— L
: =..
o ! !
[————]
=

ff
sloyoedes

Disk space variation

Fig. 13. Simulation wiring diagram for DSVs and IDSCs.

To further validate the accuracy of the proposed model, this
study compares the simulated winding fault FRA data with
the corresponding measured FRA data, encompassing inter-
disk short circuits (IDSCs) and disk space variations (DSVs).

Regarding IDSCs, experimental validation can be performed
by directly short-circuiting the conductors, as illustrated in
Fig. [13] Different fault locations are achieved by varying the
pairs of short-circuited conductors [1]. For instance, IDSC-
#1-#2 denotes an IDSC between conductors #1 and #2. In the
built model, such IDSC faults are simulated by short-circuiting
the equivalent units associated with the corresponding disks.
A comparison between the simulated and measured FRA data
is presented in Fig. [14]

DSVs are characterized by a reduction in the inter-disk
spacing, which predominantly manifests as an increase in
inter-disk capacitance within the equivalent circuit model.
This alteration is equivalent to introducing parallel capacitors
between adjacent disks [1], thereby providing an alternative
current pathway through the winding and perturbing the dis-
tribution of the winding’s leakage magnetic field, as depicted

Gain/dB

200

400 600 800 1000

——Actua FRA

Gain/dB

Frequency/kHz Frequency/kHz
(@) (b)
|DSC-#2-#3 |DSC-#2-#5
-10 0
- = =Simulated FRA = = =Simulated FRA

——Actual FRA

D ——Actual FRA
4 I

-80 -80
200 400 600 800 1000 200 400 600 800 1000
Frequency/kHz Frequency/kHz
() (d)
IDSC-#3-#6 IDSC-#5-#6
-10 -10
= = =Simulated FRA = = =Simulated FRA

-20 -20 —— Actual FRA

~
S

Gain/dB
Gain/dB

-80 -80

200 400 600 800 1000 200 400 600 800 1000
Frequency/kHz Frequency/kHz
(e) (f)

Fig. 14. Several FRA data of IDSCs obtained from actual measurement
and model-based simulation. (a). IDSC-#1-#2. (b) IDSC-#1-#6. (c).
IDSC-#2-#3. (d). IDSC-#2-#5. (e). IDSC-#3-#6. (f). IDSC-#5-#6.

in Fig. [[3] For instance, DSV-#1-#2-57pF denotes a DSV be-
tween conductors #1 and #2 achieved via the insertion of a 57
pF parallel capacitor. In the built model, DSVs are simulated
by incorporating a capacitor between the corresponding units.
A comparison between the simulated and measured FRA data
is provided in Fig. [T3]

As observed in Figs. [14] and [T3] the simulated IDSCs and
DSVs, derived from the built model, exhibit a reasonable
degree of consistency with actual measurements within the
frequency ranges of 1-600 kHz and 1-900 kHz, respectively.
This agreement further supports the practical applicability of
the proposed model. However, the consistency is diminished
in the high-frequency range, which may be attributed to an
incomplete representation of stray capacitance. Furthermore,
numerous studies, as evidenced by Refs. [16], [29], [30],
have demonstrated that resonance points within the low- and
mid-frequency ranges contain the most fault information. The
model exhibits small deviations from the measured fault sig-
natures in the low- and mid-frequency ranges. Consequently, it
provides a valuable reference for decision-making in practical
fault detection.

It should be noted that the simulation results presented in
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Fig. 15. Several FRA data of DSVs obtained from actual measurement and model-based simulation. (a). DSV-#1-#2-50pF. (b). DSV-#1-#2-67pF.
(c). DSV-#1-#2-200pF. (d). DSV-#2-#3-50pF. (). DSV-#2-#3-67pF. (f).DSV-#2-#3-100pF. (g). DSV-#2-#3-200pF. (h). DSV-#3-#4-50pF.

Figs. [T4] and [T3] are based on the model built in the previous
section, where only short circuits or parallel capacitors are
introduced, leaving the circuit parameters unmodified.

V. DISCUSSION AND LIMITATION

Currently, numerous studies have investigated transformer
winding modeling using three types of models: black-box,
white-box, and gray-box models. In contrast to black-box
models [14], [15], the proposed model incorporates physical
interpretations. Indeed, the proposed method combines the
advantages of both white-box and gray-box models, leveraging
the former to reduce the computational burden associated
with parameter space exploration and the latter to mitigate
the discrepancy between measured and simulated frequency
response fingerprints. Compared to previous studies on white-
box models [9], [11], [25], the proposed method demonstrates
closer agreement between the simulated and measured FRA
data under normal and faulty conditions. Furthermore, the
identified parameters exhibit greater physical significance than
those obtained by directly applying optimization algorithms to
a gray-box model with an unrestricted parameter space [16]-
[20].

During the transformer periodic inspections, FRA remains
the predominant diagnostic method. However, its accuracy is
often constrained by the subjective expertise of maintenance
personnel [2]. The built model could address this limitation
by providing an objective interpretive framework, such as
elucidating FRA data across diverse fault types and locations
[9], [11]. Besides, while data-driven methods leverage FRA
data to develop intelligent fault diagnosis models [13], their
robustness is limited by the paucity of practical fault data [1].
By exploiting physical simulations within the built model,
synthetic datasets can be generated to augment the training

dataset, thereby fostering a synergistic integration of physical
models and data-driven methods that enhance generalization
and predictive accuracy.

While the proposed method demonstrates advantages in
terms of model performance and physical interpretability, it
still has several limitations:

1) This study focuses solely on the A-phase of the high-

voltage winding and does not account for the coupling
between the high- and low-voltage windings, nor the
coupling between the three phases. This is attributed
to the limited influence of these coupling effects on
the measured single-phase FRA data. Furthermore, the
computational complexity and associated time require-
ments pose a significant challenge in the development
of a complete FEM model that considers these coupling
effects. However, given that conventional offline FRA
for winding fault diagnosis is typically performed phase
by phase, the single-winding model developed in this
study offers practical applicability.
The scope of winding faults simulated in this study is
limited. It is difficult to use circuit-based models to
emulate various mechanical faults due to the difficulty in
quantifying the associated circuit parameters for certain
complex deformations or components, such as radial
deformation or bushing conditions [31], [32].

2)

V. CONCLUSION

This study proposes a two-step broadband equivalent circuit
modeling method for power transformer winding based on
FRA and BO. Based on the experimental and comparative
results, the following conclusions are drawn:

1) The proposed model, which employs distinct parameter

values for each unit and incorporates long-distance mu-
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2)

3)

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

tual inductance and capacitance, demonstrates superior
agreement with measured FRA data from a physical
transformer.

To address the challenges associated with high-
dimensional parameter identification, this study employs
FEM to derive an initial parameter set in Step 1. This
precalculation significantly reduces the computational
time required for subsequent fine-tuning of circuit pa-
rameters using optimization algorithms based on mea-
sured FRA data in Step 2. Furthermore, this method fa-
cilitates data interaction between the measured data and
the built model, improving the possibility of searching
for a set of feasible solutions.

To validate the model’s performance, several common
winding mechanical faults are simulated. The simulated
FRA changing trends exhibit strong agreement with the
measured data, thereby indirectly confirming a robust
mapping relationship between the model and the actual
transformer. Furthermore, simulated FRA data can serve
as a valuable reference for subsequent fault diagnosis.
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