

Two-step Broadband Equivalent Circuit Modeling Method for Power Transformer Winding Based on Frequency Response Analysis and Bayesian Optimization

Yu Chen, Jiangnan Liu, Yuxuan Ding, Yaping Du, Binghao Li, Chenguo Yao, *Member, IEEE*, Zhongyong Zhao, *Member, IEEE*

Abstract— Frequency response analysis (FRA) is a well-established technique to detect transformer winding deformation faults. Its diagnostic application is based on the principle that a transformer winding can be represented by an equivalent circuit consisting of resistors, inductors, and capacitors. However, rapidly obtaining an accurate and physically meaningful broadband equivalent circuit model for windings remains challenging, limiting both the understanding of fault mechanisms and the generation of data for data-driven fault diagnosis methods. To address these difficulties, this study proposes a two-step broadband equivalent circuit modeling method for the transformer winding based on FRA and Bayesian optimization (BO), considering long-distance mutual inductances and capacitances. The proposed method is validated in a specially designed 10 kV power transformer. Subsequently, two kinds of winding deformation faults, including inter-disk short circuits (IDSCs) and disk space variations (DSVs), are simulated on the basis of the built model and compared with the experimental FRA data. The validation results confirm the accuracy and effectiveness of the proposed method in the construction of the equivalent winding circuit.

Index Terms— Winding modeling, broadband equivalent circuit, frequency response analysis, Bayesian optimization.

This work was supported in part by the China Southern Power Grid under Grant No. ZBKJXM20232293, in part by the Fundamental Research Funds for the Central Universities under Grant SWU-KT22027, and in part by the National Natural Science Foundation of China under Grant 51807166 (*Corresponding author: Zhongyong Zhao and Yuxuan Ding*).

Yu Chen, Yuxuan Ding, and Yaping Du are with the Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China (e-mail: yu2000.chen@connect.polyu.hk, yuxuan.ding@polyu.edu.hk, yaping.du@polyu.edu.hk).

Jiangnan Liu is with the Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd, Guangzhou 510620, China (e-mail: xjy7641@sina.com).

Binghao Li, is with the CSG Electric Power Research Institute, China Southern Power Grid, Huangpu 510663, China (e-mail: tomylbh@foxmail.com).

Chenguo Yao is with the State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China (e-mail: yaochenguo@cqu.edu.cn).

Zhongyong Zhao is with the College of Engineering and Technology, Southwest University, Chongqing 400716, China (e-mail: zhaozy1988@swu.edu.cn).

I. INTRODUCTION

POWER transformers are critical components within the power system, playing an essential role in power transmission, conversion, and voltage regulation [1]–[3]. Their ability to manipulate voltage and current mitigates fluctuations that degrade power quality or cause equipment failure, enhancing the stability of the overall power system. Consequently, given the critical and costly nature of transformers, their malfunctions not only incur substantial maintenance expenses but also significantly compromise the reliability and economic efficiency of the power system [4], [5]. Therefore, ensuring the reliable operation of power transformers is important for maintaining the safe and stable functioning of the power system [6].

Winding deformation is a common fault in power transformers, often resulting from short-circuit (SC) currents that generate substantial electromagnetic forces. These forces can cause irreversible deformation of the transformer windings. As reported by the International Council on Large Electric Systems (CIGRE), winding deformation accounts for approximately 30% of transformer faults. In practice, assessing winding conditions requires draining the transformer oil for internal visual inspection, which is time-consuming and low-efficiency. To overcome these difficulties, researchers have developed various diagnostic methods using various measured signals, including short circuit impedance (SCI) [7], low voltage impulse (LVI) [8], frequency response analysis (FRA) [9]–[11], etc. Among these, FRA has gained the most popularity among researchers and related maintenance personnel as an effective technique for detecting winding deformation because of its precision, simplicity, cost-effectiveness, efficacy, and non-destructive nature. FRA is an offline diagnostic technique used to detect transformer winding faults through graphical analysis, which is currently a widely adopted method in periodic inspection of transformer windings, phase by phase [2], [3]. Specifically, FRA employs the frequency response fingerprint, also referred to as the transfer function or FRA data, to interpret winding deformation faults.

The frequency response fingerprint of transformer windings can be determined through both direct measurement and

66 simulation using equivalent circuit models. In simulations,
67 these models are developed to investigate the influence of
68 various physical deformations on the winding's frequency re-
69 sponse fingerprint, offering a more efficient and cost-effective
70 approach compared to destructive physical experiments. Con-
71 sequently, an accurate equivalent circuit model facilitates cost-
72 free simulations of transformer winding faults [9], [11] and
73 enables the generation of data for data-driven fault diagnosis
74 methods [1], [12], [13]. Furthermore, the interpretation of
75 frequency response fingerprints for winding fault diagnosis
76 currently relies heavily on expert experience, which means that
77 an accurate winding model can help maintenance personnel
78 improve the objectivity of their judgments.

79 Currently, there are three common methods for establishing
80 FRA-based winding equivalent circuit models:

- 81 1) Black-box models use multiple RLC units to simulate
82 resonance points in their frequency response finger-
83 prints, without requiring details of the physical structure
84 of the transformer [14], [15]. While yielding similar
85 frequency response fingerprints, this approach provides
86 information lacking physical significance, rendering it
87 unsuitable for investigating the influence of transformer
88 winding faults.
- 89 2) White-box models, usually constructed via finite ele-
90 ment method (FEM) based on the transformer's physical
91 structure and material properties, directly derive the fre-
92 quency response fingerprints from the electromagnetic
93 field [9], [11]. However, this approach is computa-
94 tionally intensive and time-consuming, but it often yields
95 simulated data that deviates significantly from measured
96 data.
- 97 3) Grey-box models are a variant of the black-box mod-
98 els, which first construct an equivalent circuit using
99 prior physical knowledge and then identify parameters
100 through optimization algorithms, such as genetic al-
101 gorithm (GA) and particle swarm optimization (PSO),
102 based on measured frequency response fingerprints [16]–
103 [20]. However, this parameter identification process fre-
104 quently necessitates extensive adjustments to the search
105 parameter space to obtain optimal parameters that yield
106 a close match with the measured data.

107 Therefore, this study proposes a two-step broadband equivalent
108 circuit modeling method for transformer windings based
109 on FRA and Bayesian optimization (BO) to address the
110 drawbacks mentioned above. The main contributions are as
111 follows:

- 112 1) We propose a two-step broadband equivalent circuit
113 modeling method for transformer windings, offering a
114 generalizable approach applicable to other transfor-
115 mers. The proposed model, implemented in Simulink,
116 simulates the frequency response of both healthy and
117 faulty transformer windings while retaining physical
118 significance.
- 119 2) Unlike previous studies that employed an unrestricted
120 parameter space, we use a white-box model to generate
121 a set of feasible parameter solutions, which serve as a
122 reference for subsequent parameter identification. This

123 approach substantially increases both the probability and
124 speed of obtaining viable solutions.

- 125 3) In contrast to previous studies employing conventional
126 optimization algorithms with mean squared error (MSE)
127 as a fitness function, we adopt a sample-efficient multi-
128 objective Bayesian algorithm (MOBO), utilizing three
129 common fitness functions as distinct optimization objec-
130 tives. BO-based algorithms reduce computational costs
131 by minimizing the number of model executions required
132 for parameter identification.

133 The remainder of this study is organized as follows: Section
134 II introduces the methodology, Section III presents the results,
135 Section IV presents the discussion and limitations, and Section
136 V provides the conclusions.

II. METHODOLOGY

A. Basic principle of FRA and proposed model

138 Under high-frequency excitation, typically above 1 kHz, the
139 transformer core exhibits negligible excitation effects, allowing
140 the winding to be represented as a passive linear two-port
141 network characterized by distributed parameters, including
142 resistors, inductors, and capacitors [17]. In practice, sinusoidal
143 signals $\vec{R}_{in}(\omega)$ with frequencies ranging from 1 kHz to 1 MHz
144 are applied to the input terminal of the winding, and the corre-
145 sponding response signals $\vec{R}_{out}(\omega)$ are measured at the output
146 terminal, yielding the frequency response fingerprint $T(\omega)$, as
147 defined in Equation (1). The condition of the winding, whether
148 healthy or faulty, is characterized by this frequency response
149 fingerprint. Specifically, the distributed parameters are influ-
150 enced by the geometric dimensions of the winding. Therefore,
151 any winding deformation alters these parameters, which causes
152 shifts in the resonance points, thereby changing the frequency
153 response fingerprint. By comparing the measured FRA data
154 with a baseline (healthy) fingerprint, maintenance personnel
155 can analyze these variations to assess the condition of the
156 winding [2], [3].

$$157 T(\omega) = 20 \log_{10} \left| \frac{\vec{R}_{out}(\omega)}{\vec{R}_{in}(\omega)} \right| \text{dB} \quad (1)$$

158 where $\vec{R}_{in}(\omega)$ and $\vec{R}_{out}(\omega)$ are excitation and response signals,
159 and $T(\omega)$ is the frequency response fingerprint (amplitude
160 versus frequency). According to existing FRA standards [21]–
161 [23] and Refs. [2], [3], this study uses a frequency range of 1
162 to 1000 kHz.

163 The ladder network model is a widely adopted approach for
164 modeling transformer windings [16], [17], [24]. This model
165 represents the winding as cascaded equivalent units, each
166 comprising passive circuit elements (i.e., R , G , L , and C)
167 and corresponding to a single- or multi-disk winding. Due to
168 the typically uniform structure of the transformer winding, a
169 complete winding can be effectively modeled as a cascade
170 of these repeatedly connected equivalent units. As shown in
171 Fig. 1, L represents the self-inductance of the winding, R
172 represents resistance (i.e., copper loss), C_s characterizes the
173 inter-disk capacitance effect, G_s characterizes the inter-disk
174 leakage current loss, C_g represents the capacitance between a

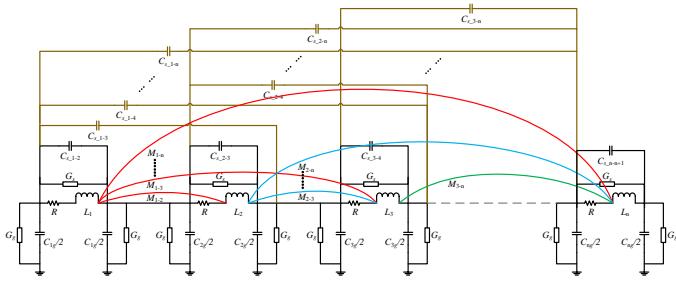


Fig. 1. The proposed equivalent circuit model of transformer winding, considering long-distance mutual inductances and capacitances.

winding disk and ground, G_g represents the ground leakage current loss, and M represents the mutual inductance between different disks.

At low frequencies, transformer windings exhibit predominantly inductive characteristics, whereas at high frequencies, they display predominantly capacitive characteristics [17]. Regarding the former, substantial mutual inductance persists even between distantly separated disks, owing to the coaxial arrangement of the windings. For the latter, whereas most prior studies overlooked the long-distance capacitance, this study incorporates it to simulate high-frequency FRA characteristics as accurately as possible. Besides, it should be noted that the proposed model is specific to the high-voltage winding phase and does not account for coupling effects between the high- and low-voltage windings or among the different phases. The exclusion of the low-voltage winding is a consequence of the ladder network model simplification detailed in Ref. [24]. Furthermore, the omission of inter-phase coupling is justified by the limited influence on FRA data obtained from the single-phase measurement with other windings open-circuited [16], [24], [25].

B. Basic principle of Bayesian optimization

This study necessitates parameter identification for the model depicted in Fig. 1. It is important to note that the parameters within each equivalent unit are not identical, resulting in a high-dimensional parameter space. Previous methods often simplified this by copying parameters from a single unit across all others, thereby reducing the search parameter space [18]. However, this approach introduces inaccuracies given the inherent variations among individual winding disks. Furthermore, conventional intelligent algorithms, such as GA and PSO, are unsuitable for such high-dimensional parameter identification problems, particularly when interacting many times with a complex model. Specifically, these conventional methods require millions of model executions during the optimization process, placing excessive demands on computational resources [26]. Therefore, to address this parameter search challenge and minimize model executions, this study combines BO with specially designed objective functions to obtain an optimal set of circuit parameter values.

BO employs a Gaussian process (GP) to construct a posterior probability distribution by iteratively combining existing observations with their corresponding objective function evaluations. An acquisition function is then used to intelligently

guide the selection of the subsequent observation most likely to yield the global optimum. Fig. 2 provides an illustrative example of single-objective BO to find the minimum of a given function.

C. Details of Two-step modeling

This study proposes a two-step modeling method for transformer winding, with the complete procedure detailed in Algorithm 1:

1) *Step 1*: A three-dimensional (3D) model of the transformer is constructed in ANSYS Maxwell, incorporating its physical structure and material properties, including insulation oil, pressboard, spacers, tank, and core. Subsequently, FEM is used to determine the values of the circuit parameters, as shown in Fig. 1, with detailed calculations presented in the following section.

2) *Step 2*: An equivalent circuit model is constructed in Simulink. Subsequently, a parameter search space is defined, encompassing the range $\pm 5\%$ around the parameter values derived in Step 1. Then, MOBO is employed for parameter identification [27], guided by three specifically designed objective functions, as delineated by Equations (2)-(5). To be specific, Ob_1 quantifies the overall fitting accuracy, Ob_2 evaluates the similarity between the measured and simulated FRA data [17], and Ob_3 is designed to optimize the fitting of resonance points, whose accuracy is closely related to the accuracy of subsequent fault simulations [2], [18]. In addition, the sparse axis-aligned subspace (SAAS) GP [28] is utilized in conjunction with the parallel noise expected hypervolume improvement (qNEHVI) as the acquisition function for MOBO, representing a state-of-the-art (SOTA) approach for high-dimensional optimization problems [26].

$$Ob_1 = \sum_{i=1}^N \left(\frac{T_{actual}(w_i) - T_{model}(w_i)}{T_{actual}(w_i)} \right)^2 \quad (2)$$

$$Ob_2 = \sum_{i=1}^N \left(\frac{T_{actual}(w_i) - T_{model}(w_i)}{T_{actual}(w_i)} \right)^2 + \beta \left(\frac{\sum_{i=1}^N (T_{actual}^*(w_i) T_{model}^*(w_i))}{\sqrt{\sum_{w=1}^N (T_{model}^*(w_i))^2 \sum_{w=1}^N (T_{actual}^*(w_i))^2}} + 1 \right)^{-1} \quad (3)$$

$$T^*(w_i) = |T(w_i)| - \frac{1}{N} \sum_{i=1}^N |T(w_i)| \quad (4)$$

$$Ob_3 = \sum_{i_{RP}=1}^{N_{RP}} \left(\frac{T_{actual}(w_{i_{RP}}) - T_{model}(w_{i_{RP}})}{T_{actual}(w_{i_{RP}})} \right)^2 \quad (5)$$

where T_{actual} and T_{model} are actually measured and model-simulated FRA data, respectively. N is the number of measured and simulated sample points, N_{RP} is the number of measured and simulated resonance points, and β represents a hyperparameter, which is assigned a value of 5 in this study.

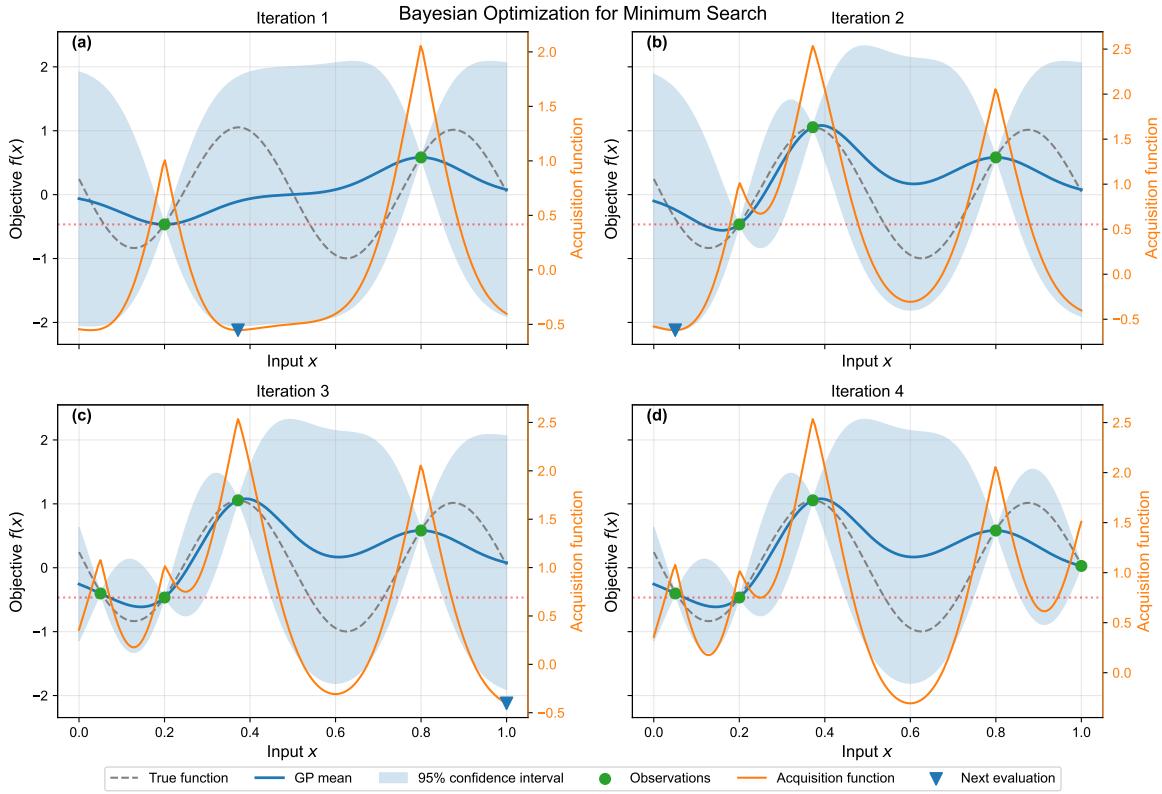


Fig. 2. Illustration of the Bayesian optimization process to find the minimum of a simple function. A Gaussian process model predicts the function values (solid blue line) along with associated uncertainties (blue shading) based on previously collected data. Subsequently, an acquisition function leverages this model to evaluate the potential “value” of future measurements, thereby balancing exploration and exploitation. The next observation is then selected by minimizing the acquisition function in the parameter space. This iterative process continues until the optimization objectives are achieved.

TABLE I
DIMENSIONAL PARAMETERS OF THE EXPERIMENTAL TRANSFORMER

Parameter	Value		
Iron core diameter (mm)	300		
Iron core yoke length (mm)	1390		
Iron core yoke height (mm)	1190		
Turn to turn spacing (mm)	3		
Disk to disk separation (mm)	2 (1-10, 21-30 disks, and 11-20 disks bottom) and 26 (11-20 disks top)		
Tank (mm)	1705 × 740 × 1415		
Number of disks	30		
Number of turns per disk	10		
Number of parallel	1		
High voltage winding	Low voltage winding		
Inner radius (mm)	421	Inner radius (mm)	316
Outer radius (mm)	500	Outer radius (mm)	349
Height (mm)	520	Height (mm)	87.5

255

III. EXPERIMENT RESULTS

256

A. Experiment settings

257

The experimental subject is a specially designed 10 kV power transformer, as shown in Fig. 3. Detailed design parameters for this transformer are provided in Table I. Internally, the transformer is structured according to the design principles of the conventional 110 kV transformer. It features a core-type construction, with the high-voltage winding configured as a disc-type winding comprising a total of 30 disks. The top and bottom sections each consist of 10 disks wound in

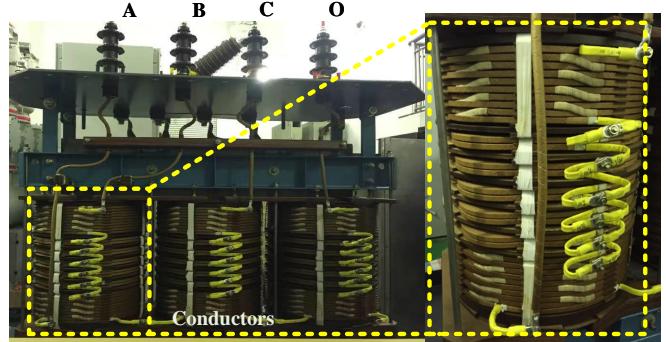


Fig. 3. Internal structure of the specially designed 10 kV transformer.

265
266
267
268
269
270
271
272
273
274
275
276
277

an interleaved pattern, while the middle section encompasses 5 sets of double-disk continuous windings. The low-voltage winding is designed as a layer-type winding, composed of 6 layers. Specifically, this study focuses on the A-phase of the high-voltage winding, thereby building a model with 30 equivalent units.

A 3D transformer model is constructed in ANSYS Maxwell based on physical designs, including considerations for insulation materials (such as insulation oil, pressboard, and spacers) as well as the properties of the tank and core, cross-sectional geometry, number of turns, and coil diameter. The built model is illustrated in Fig. 4, and properties of insulation material within the transformer are shown in Table. II. The calculation

Algorithm 1 Two-step modeling method for the transformer winding.

Input: Objectives $f_{obj} = (Ob_1(x), Ob_2(x), Ob_3(x))$; initial evaluation budget $m \geq 2$; total evaluation budget $T > m$; data storage set H ; initial observation set $x_{1:m}$, and evaluations $y_{1:m}$ (optional). // x and y are vector values that contain multiple parameters (i.e., values of circuit parameters) and objectives, respectively.

Output: Based on evaluations, manually choose the best observation x_{best} , y_{best} in the Pareto-optimal set. If the model-based FRA data are not very matched, constrain the search space to $\pm 5\%$ around x_{best} and iterate steps 3-10.

- 1: A transformer model is constructed using ANSYS Maxwell.
- 2: The circuit parameters are determined using the FEM.
- 3: Set the calculated parameters in Step 1 within $\pm 5\%$ as the bounded search space X , $x \in X$.
- 4: If $x_{1:m}$, $y_{1:m}$ is not provided, let x_t be a Sobol sequence and let $y_t = f_{obj}(x_t)$, $x_t \in X$, for $t = 1, \dots, m$. // Construct the initial observation set and get evaluations.
- 5: **For** $t = m + 1, \dots, T$ **do**
- 6: Let $H_t = \{x_{1:t-1}, y_{1:t-1}\}$.
- 7: Use H_t to fit SAAS GP.
- 8: Use QNEHVI to obtain the next observation x_t .
- 9: Evaluate $y_t = f_{obj}(x_t)$. // Input the observation into the built model to obtain an evaluation.
- 10: **end**
- 11: **return** Pareto-optimal set $\{x_{1:a}, y_{1:a}\}$.

278 of these equivalent relative dielectric parameters can refer to
279 Ref. [25].

TABLE II
PROPERTIES OF INSULATING MATERIALS WITHIN THE TRANSFORMER.

Material	Relative dielectric constant
Pressboard	4.7
Insulation oil	2.2
Insulating cylinder/ring	4.5
Spacers	4.7

280 For capacitance calculation, the transformer tank and iron
281 core are assigned a zero potential. Each disk is assigned a
282 distinct potential, and then the capacitances between the 30
283 disks, as well as the ground capacitance of each disk, are
284 subsequently computed. Similarly, the inter-disk capacitances
285 are calculated using ANSYS electrostatic field analysis, while
286 the equivalent longitudinal capacitance is determined based on
287 the principle of electric field energy conservation. Specifically,
288 in each field simulation, for an n -conductor system, n inde-
289 pendent simulations are automatically performed. The energy
290 stored in the electric field due to the capacitance between any
291 two conductors is then given by [11], [25]:

$$W_{ij} = \frac{1}{2} \int_{\Omega} D_i \times E_j d\Omega \quad (6)$$

292 where W_{ij} represents the energy stored in the electric field
293 due to flux lines connecting charges on conductor i to those
294 on conductor j , D_i denotes the electric flux density associated

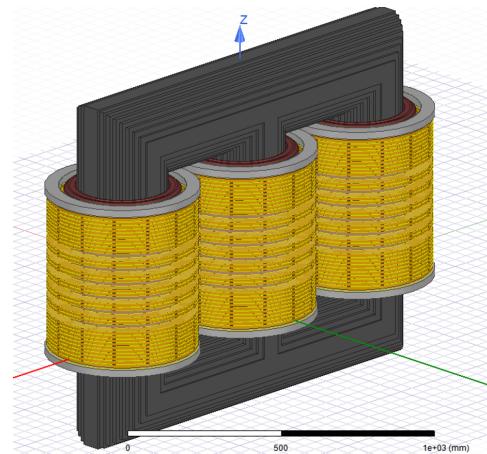


Fig. 4. 3D finite element model of transformer. This study focuses exclusively on the computed inductance, capacitance, and resistance parameters for the high-voltage A-phase winding due to the limited influence from other windings and computational resource restrictions.

295 with conductor i , and E_j represents the electric field associated
296 with conductor j . Therefore, the capacitance between the
297 conductors i and j is:

$$C_{ij} = \frac{2W_{ij}}{V_{ij}^2} \quad (7)$$

298 where V_{ij} denotes the electric potential between the conductors
299 i and j . Related results are presented in Fig. 5. It should
300 be noted that, as illustrated in Table I, the increased axial
301 distance between the 10th to 20th winding disks directly leads
302 to a reduction in their calculated capacitance values compared
303 to other winding disks.

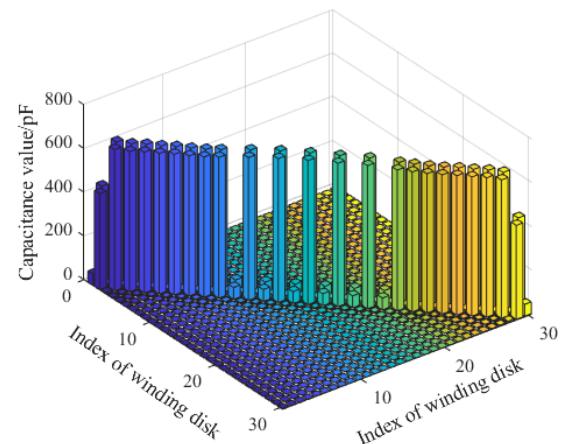


Fig. 5. Capacitance value between different disks.

304 For the determination of inductance parameters, a current
305 excitation is applied to each winding disk, and the self-
306 inductances and mutual inductances between the 30 disks
307 are then computed. The primary motivation for constructing
308 the circuit model is to accurately represent the transformer
309 winding's frequency response. Given that the frequency range
310 of interest for FRA is above 1 kHz, where the influence of
311 the transformer core is negligible, it is necessary to remove

312 the iron core from the model when calculating inductance
 313 parameters [9], [11]. Specifically, to calculate the inductance,
 314 the average magnetic energy, W_{AV} , should be first calculated
 315 as [11], [25]:

$$W_{AV} = \frac{1}{4} \int_V B \times H dV \quad (8)$$

316 where B is the magnetic flux density, H is the magnetic
 317 field strength, and V is the volume of the conductor. Then,
 318 the inductance can be calculated from the average magnetic
 319 energy:

$$L = \frac{4W_{AV}}{I_{Peak}^2} \quad (9)$$

320 where I_{Peak} is the peak winding current. Related results are
 321 depicted in Fig. 6.

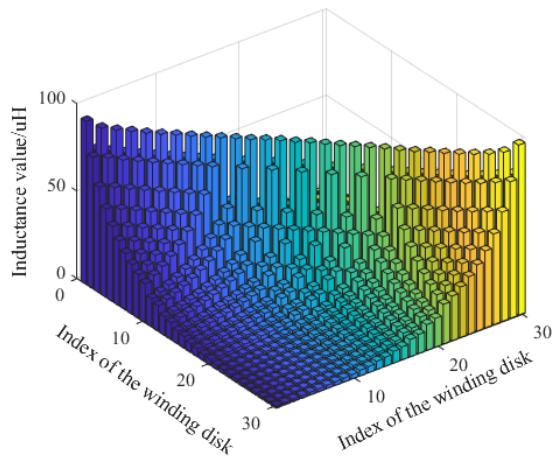


Fig. 6. Self-inductance and mutual inductance of different disks.

322 Within a fundamental unit of a ladder network, the resis-
 323 tance characterizes the inherent resistance of a single disk.
 324 While this parameter can be determined by formula-based cal-
 325 culation $R = \rho \frac{l}{S}$, the resistance obtained via this method rep-
 326 resents the direct current (DC) resistance. This value assumes a
 327 uniform current density distribution within the winding under
 328 a constant DC current, and thus does not account for the skin
 329 effect or the proximity effect. To enhance the accuracy of
 330 resistance calculation, this study establishes a two-dimensional
 331 finite element model of two adjacent winding disks within
 332 the ANSYS Maxwell eddy current field. This model is based
 333 on the physical dimensions. A defined current excitation is
 334 applied to obtain the current density distribution within each
 335 turn, as illustrated in Fig. 7. Due to the proximity effect,
 336 a symmetrical current density distribution is observed. The
 337 currents within the turns exhibit mutual repulsion, effectively
 338 displacing the moving charges in adjacent conductors towards
 339 their edges. When considering each turn as a whole, the current
 340 density distribution also displays a skin effect, concentrated
 341 along the surface of the conductor. The computed resistance
 342 parameters for each turn are presented in Fig. 8, with turns
 343 numbered 1 to 20 from left to right and top to bottom. As
 344 can be observed, the middle turns (5th, 6th, 15th, and 16th

345 turns) exhibit higher resistance values, while the end turns
 346 (1st, 10th, 11th, and 20th turns) demonstrate slightly lower
 347 resistance values. There is a discernible difference in resistance
 348 between the end and middle sections, with a calculated value
 349 of $15.46 \text{ m}\Omega$ at the end and $16.76 \text{ m}\Omega$ in the middle. The
 350 average resistance is $16.3695 \text{ m}\Omega$ in one equivalent unit.

351 For the determination of electric conductance, which charac-
 352 terizes leakage current losses, it is important to note that each
 353 turn is wrapped in insulation paper and the entire winding is
 354 immersed in transformer insulation oil. Consequently, the
 355 resulting leakage current is typically negligible. According to
 356 Refs. [9], [11], [16], [17], the electric conductance is generally
 357 on the order of $M\Omega$. Therefore, in this study, an electric
 358 conductance value of $10 M\Omega$ is adopted, and this parameter
 359 is not included in Step 2.

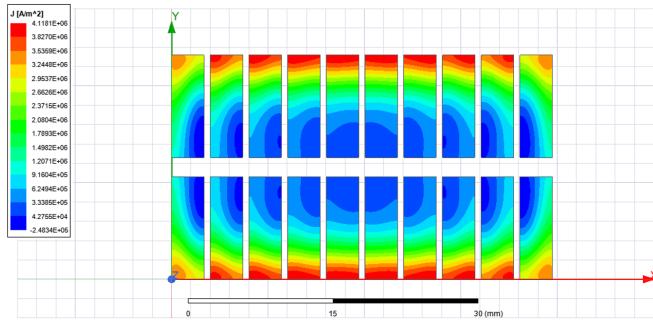


Fig. 7. Current density distribution within each turn under the influence of proximity effect.

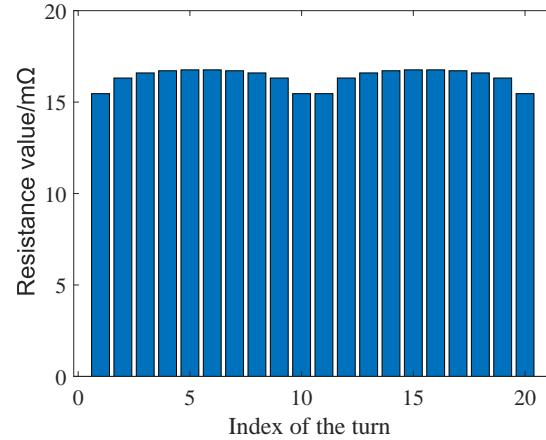


Fig. 8. Equivalent resistance parameters of two adjacent winding disks (total 20 turns).

360 It should be noted that conventional modeling approaches
 361 typically assume circuit parameters to be frequency-invariant.
 362 However, parameters such as resistance and inductance, ex-
 363 cluding capacitance, manifest frequency-dependent character-
 364 istics under varying excitation frequencies. Given the absence
 365 of geometric modifications to the winding structure throughout
 366 the simulation process, the mutual inductance coefficients
 367 between different winding disks are presumed to remain con-
 368 stant. Accordingly, the self-inductance parameters of a repre-
 369 sentative winding disk are computed across a range of frequen-
 370 cies, thereby yielding the scaling coefficients (i.e., $\eta_{frequency} =$

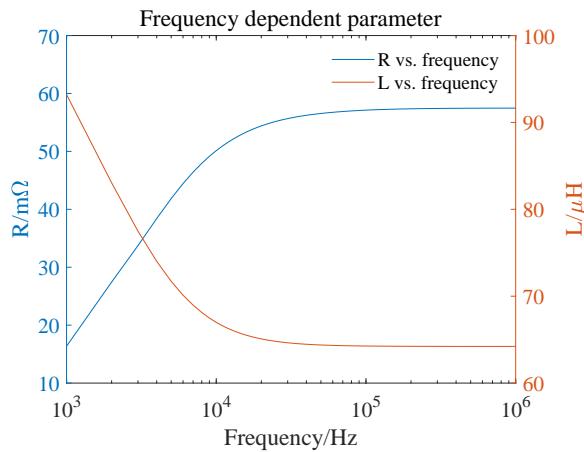


Fig. 9. Frequency-dependent characteristics of the resistance and inductance for a representative winding disk.

371 $L_{\text{frequency}}/L_{\text{baseline}}$). These coefficients are subsequently applied
 372 to the inductance matrix via scalar multiplication, facilitating
 373 the generation of frequency-specific inductance matrices. An
 374 analogous methodology is employed for resistance parameters.
 375 Fig. 9 shows the frequency-dependent characteristics of both
 376 resistance and inductance for a representative winding disk.
 377 The results presented in Figs. 6-8 are based on computations
 378 performed at 1 kHz. Thus, to derive L (including M) and R
 379 values at varying frequencies, the 1 kHz baseline values are
 380 scaled by the calculated coefficients $\eta_{\text{frequency}}$, as depicted in
 381 Fig. 9. Fundamentally, the proposed method entails calculating
 382 a single set of circuit parameters at 1 kHz, with adjustments
 383 for other frequencies achieved through multiplication by the
 384 calculated scaling coefficients $\eta_{\text{frequency}}$.

385 *B. Comparative experiments*

386 The equivalent circuit model depicted in Fig. 1 is con-
 387 structed in Simulink. Subsequently, the frequency response
 388 fingerprint of the high-voltage A-phase winding is measured
 389 using a frequency response analyzer (model: TDT6U) [1], and
 390 the experimental diagram is illustrated in Fig. 10. Following
 391 the acquisition of the measured frequency response fingerprint,
 392 these data are used in conjunction with the built model to
 393 formulate the three objective functions described in Section
 394 2.3. These objective functions are then minimized through
 395 an iterative optimization process that involves the interaction
 396 between the Simulink model and the MOBO implemented
 397 in Python. The optimized results are presented in Fig. 11.
 398 Furthermore, Fig. 11 includes single-step modeling results.

399 From Fig. 11, it can be seen that: (1) A significant dis-
 400 crepancy exists between the measured and the simulated FRA
 401 data derived solely from Step 1. This discrepancy arises due
 402 to the idealized nature of the FEM and its lack of direct
 403 interaction with measured data. (2) While utilizing only Step
 404 2 (i.e., employing optimization algorithms to identify circuit
 405 model parameters) can yield acceptable results, it is important
 406 to acknowledge that these results are obtained through iterative
 407 MOBO. The computational time required for this approach
 408 is approximately 30 times greater than that of the proposed
 409 two-step method. (3) The two-step modeling method uses

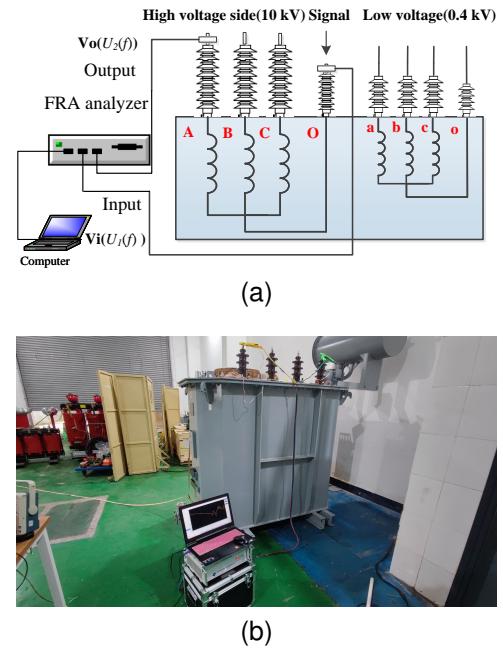


Fig. 10. Measurement experimental diagram. (a) Measurement wiring diagram. (b) Actual wiring diagram.

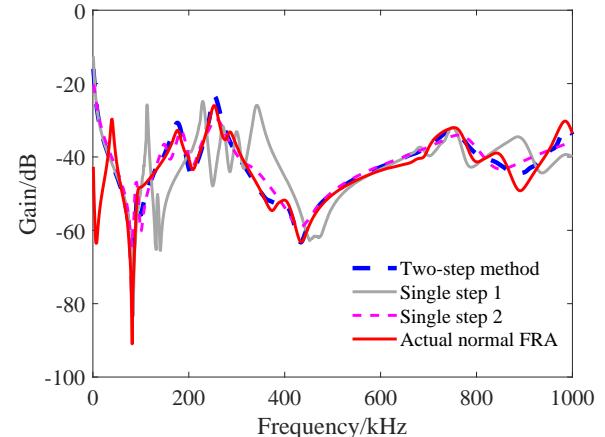


Fig. 11. Results of the two-step and single-step modeling about the normal winding. Single step 1 and Single step 2 essentially represent modeling transformer windings using white-box and gray-box models, respectively. This study focuses on model-based winding fault simulation. Black-box models are excluded from consideration due to their inherent inability to simulate winding faults.

410 the results of the first step as a reference for setting the
 411 initial parameter search space in Step 2, followed by fine-
 412 tuning parameters through the minimization of the objective
 413 functions. The former action constrains the search parameter
 414 space, while the latter enhances the correlation between the
 415 measured and simulated data. However, it should be noted
 416 that in comparison to the measured FRA data, the simulated
 417 one does not capture the first resonance point, likely due to the
 418 exclusion of the iron core's influence in the modeling process.
 419 In the low-frequency range, despite the frequencies reaching
 420 the kilohertz range, the excitation effect of the iron core is not
 421 entirely negligible.

422 This study presents results for different modeling ap-
 423 proaches regarding the normal winding, as illustrated in

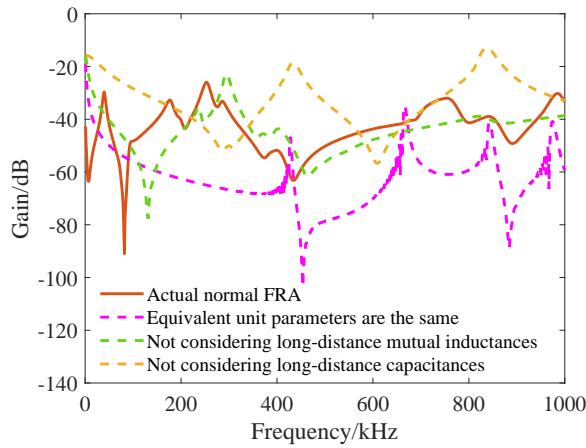


Fig. 12. Results of different models about the normal winding.

424 Fig. 12. The incorporation of long-distance mutual inductance
425 and capacitance, along with the use of distinct parameter
426 values for each unit, proves beneficial for establishing an
427 accurate equivalent circuit model.

428 C. DSVs and IDSC simulation based on the built model

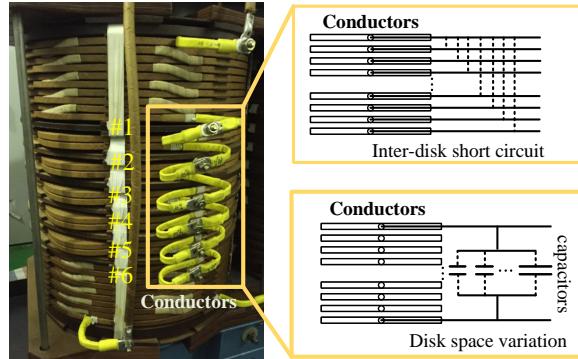


Fig. 13. Simulation wiring diagram for DSVs and IDSCs.

429 To further validate the accuracy of the proposed model, this
430 study compares the simulated winding fault FRA data with
431 the corresponding measured FRA data, encompassing inter-
432 disk short circuits (IDSCs) and disk space variations (DSVs).
433

434 Regarding IDSCs, experimental validation can be performed
435 by directly short-circuiting the conductors, as illustrated in
436 Fig. 13. Different fault locations are achieved by varying the
437 pairs of short-circuited conductors [1]. For instance, IDSC-
438 #1-#2 denotes an IDSC between conductors #1 and #2. In the
439 built model, such IDSC faults are simulated by short-circuiting
440 the equivalent units associated with the corresponding disks.
441 A comparison between the simulated and measured FRA data
442 is presented in Fig. 14.

443 DSVs are characterized by a reduction in the inter-disk
444 spacing, which predominantly manifests as an increase in
445 inter-disk capacitance within the equivalent circuit model.
446 This alteration is equivalent to introducing parallel capacitors
447 between adjacent disks [1], thereby providing an alternative
448 current pathway through the winding and perturbing the
449 distribution of the winding's leakage magnetic field, as depicted

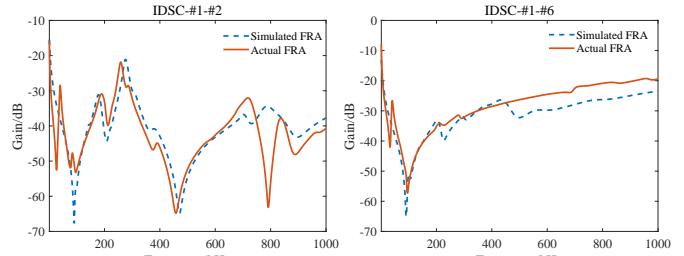
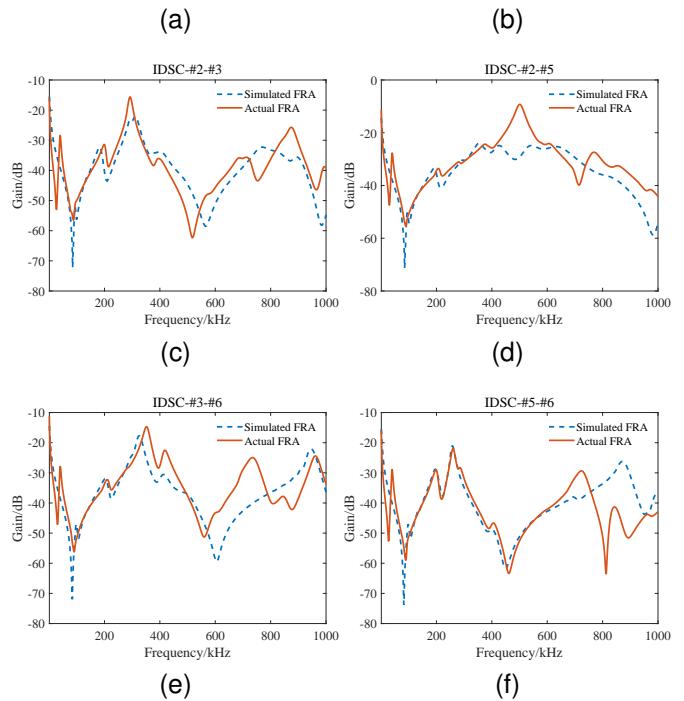


Fig. 14. Several FRA data of IDSCs obtained from actual measurement and model-based simulation. (a). IDSC-#1-#2. (b). IDSC-#1-#6. (c). IDSC-#2-#3. (d). IDSC-#2-#5. (e). IDSC-#3-#6. (f). IDSC-#5-#6.

449 in Fig. 13. For instance, DSV-#1-#2-57pF denotes a DSV be-
450 tween conductors #1 and #2 achieved via the insertion of a 57
451 pF parallel capacitor. In the built model, DSVs are simulated
452 by incorporating a capacitor between the corresponding units.
453 A comparison between the simulated and measured FRA data
454 is provided in Fig. 15.

455 As observed in Figs. 14 and 15, the simulated IDSCs and
456 DSVs, derived from the built model, exhibit a reasonable
457 degree of consistency with actual measurements within the
458 frequency ranges of 1–600 kHz and 1–900 kHz, respectively.
459 This agreement further supports the practical applicability of
460 the proposed model. However, the consistency is diminished
461 in the high-frequency range, which may be attributed to an
462 incomplete representation of stray capacitance. Furthermore,
463 numerous studies, as evidenced by Refs. [16], [29], [30],
464 have demonstrated that resonance points within the low- and
465 mid-frequency ranges contain the most fault information. The
466 model exhibits small deviations from the measured fault sig-
467 natures in the low- and mid-frequency ranges. Consequently,
468 it provides a valuable reference for decision-making in practical
469 fault detection.

470 It should be noted that the simulation results presented in

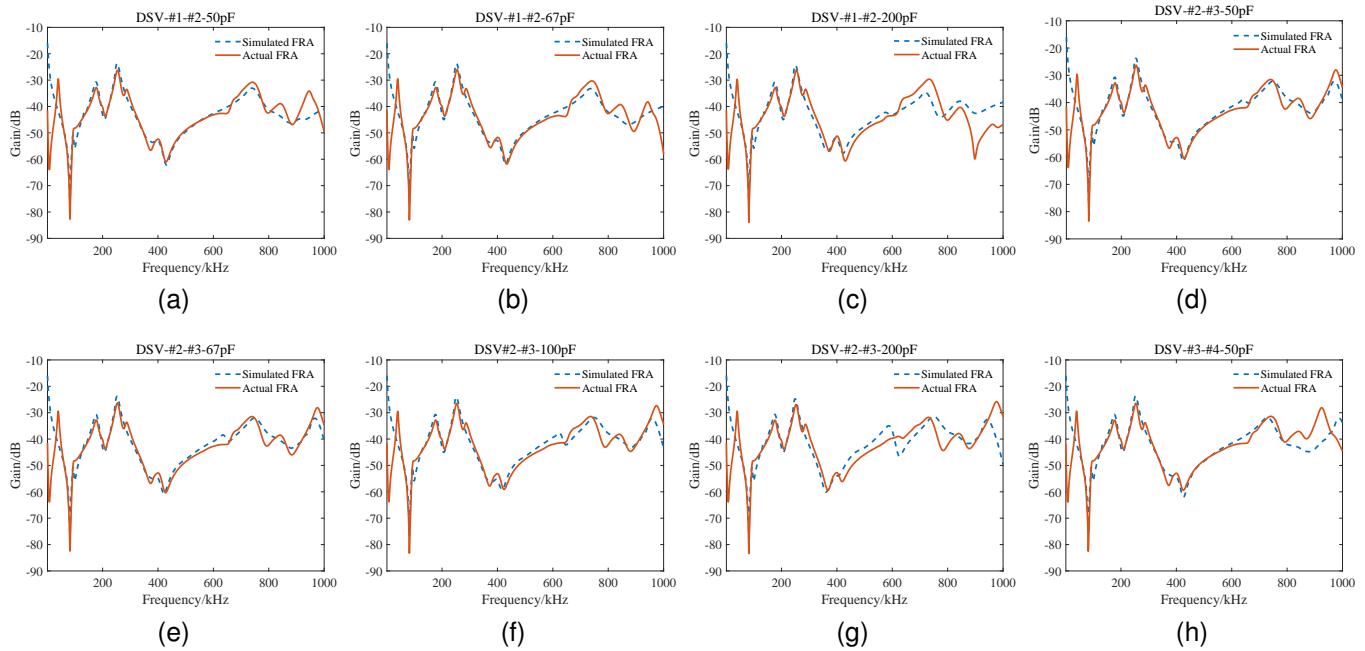


Fig. 15. Several FRA data of DSVs obtained from actual measurement and model-based simulation. (a). DSV-#1-#2-50pF. (b). DSV-#1-#2-67pF. (c). DSV-#1-#2-200pF. (d). DSV-#2-#3-50pF. (e). DSV-#2-#3-67pF. (f). DSV-#2-#3-100pF. (g). DSV-#2-#3-200pF. (h). DSV-#3-#4-50pF.

471 Figs. 14 and 15 are based on the model built in the previous
 472 sections, where only short circuits or parallel capacitors are
 473 introduced, leaving the circuit parameters unmodified.

IV. DISCUSSION AND LIMITATION

475 Currently, numerous studies have investigated transformer
 476 winding modeling using three types of models: black-box,
 477 white-box, and gray-box models. In contrast to black-box
 478 models [14], [15], the proposed model incorporates physical
 479 interpretations. Indeed, the proposed method combines the
 480 advantages of both white-box and gray-box models, leveraging
 481 the former to reduce the computational burden associated
 482 with parameter space exploration and the latter to mitigate
 483 the discrepancy between measured and simulated frequency
 484 response fingerprints. Compared to previous studies on white-
 485 box models [9], [11], [25], the proposed method demonstrates
 486 closer agreement between the simulated and measured FRA
 487 data under normal and faulty conditions. Furthermore, the
 488 identified parameters exhibit greater physical significance than
 489 those obtained by directly applying optimization algorithms to
 490 a gray-box model with an unrestricted parameter space [16]–
 491 [20].

492 During the transformer periodic inspections, FRA remains
 493 the predominant diagnostic method. However, its accuracy is
 494 often constrained by the subjective expertise of maintenance
 495 personnel [2]. The built model could address this limitation
 496 by providing an objective interpretive framework, such as
 497 elucidating FRA data across diverse fault types and locations
 498 [9], [11]. Besides, while data-driven methods leverage FRA
 499 data to develop intelligent fault diagnosis models [13], their
 500 robustness is limited by the paucity of practical fault data [1].
 501 By exploiting physical simulations within the built model,
 502 synthetic datasets can be generated to augment the training

503 dataset, thereby fostering a synergistic integration of physical
 504 models and data-driven methods that enhance generalization
 505 and predictive accuracy.

506 While the proposed method demonstrates advantages in
 507 terms of model performance and physical interpretability, it
 508 still has several limitations:

- 509 1) This study focuses solely on the A-phase of the high-
 510 voltage winding and does not account for the coupling
 511 between the high- and low-voltage windings, nor the
 512 coupling between the three phases. This is attributed
 513 to the limited influence of these coupling effects on
 514 the measured single-phase FRA data. Furthermore, the
 515 computational complexity and associated time require-
 516 ments pose a significant challenge in the development
 517 of a complete FEM model that considers these coupling
 518 effects. However, given that conventional offline FRA
 519 for winding fault diagnosis is typically performed phase
 520 by phase, the single-winding model developed in this
 521 study offers practical applicability.
- 522 2) The scope of winding faults simulated in this study is
 523 limited. It is difficult to use circuit-based models to
 524 emulate various mechanical faults due to the difficulty in
 525 quantifying the associated circuit parameters for certain
 526 complex deformations or components, such as radial
 527 deformation or bushing conditions [31], [32].

V. CONCLUSION

528 This study proposes a two-step broadband equivalent circuit
 529 modeling method for power transformer winding based on
 530 FRA and BO. Based on the experimental and comparative
 531 results, the following conclusions are drawn:

- 533 1) The proposed model, which employs distinct parameter
 534 values for each unit and incorporates long-distance mu-

535 tual inductance and capacitance, demonstrates superior
536 agreement with measured FRA data from a physical
537 transformer.

538 2) To address the challenges associated with high-
539 dimensional parameter identification, this study employs
540 FEM to derive an initial parameter set in Step 1. This
541 precalculation significantly reduces the computational
542 time required for subsequent fine-tuning of circuit pa-
543 rameters using optimization algorithms based on mea-
544 sured FRA data in Step 2. Furthermore, this method fa-
545 cilitates data interaction between the measured data and
546 the built model, improving the possibility of searching
547 for a set of feasible solutions.

548 3) To validate the model's performance, several common
549 winding mechanical faults are simulated. The simulated
550 FRA changing trends exhibit strong agreement with the
551 measured data, thereby indirectly confirming a robust
552 mapping relationship between the model and the actual
553 transformer. Furthermore, simulated FRA data can serve
554 as a valuable reference for subsequent fault diagnosis.

REFERENCES

555

556 [1] Y. Chen, Z. Zhao, J. Liu, S. Tan, and C. Liu, "Application of generative
557 ai-based data augmentation technique in transformer winding deformation
558 fault diagnosis," *Engineering Failure Analysis*, vol. 159, p. 108115, 2024.

559

560 [2] M. H. Samimi and S. Tenbohlen, "Fra interpretation using numerical
561 indices: State-of-the-art," *International Journal of Electrical Power
562 Energy Systems*, vol. 89, pp. 115–125, 2017.

563 [3] W. C. Sant'Ana, C. P. Salomon, G. Lambert-Torres, L. E. Borges da
564 Silva, E. L. Bonaldi, L. E. de Lacerda de Oliveira, and J. G. Borges
565 da Silva, "A survey on statistical indexes applied on frequency response
566 analysis of electric machinery and a trend based approach for more
567 reliable results," *Electric Power Systems Research*, vol. 137, pp. 26–33,
568 2016.

569 [4] C. Gezegin, O. Ozgonenel, and H. Dirik, "A monitoring method for aver-
570 age winding and hot-spot temperatures of single-phase, oil-immersed
571 transformers," *IEEE Transactions on Power Delivery*, vol. 36, no. 5, pp.
572 3196–3203, 2021.

573 [5] T. Manoj, C. Ranga, A. Abu-Siada, and S. S. M. Ghoneim, "Analytic
574 hierarchy processed grey relational fuzzy approach for health assessment
575 of power transformers," *IEEE Transactions on Dielectrics and Electrical
576 Insulation*, vol. 31, no. 3, pp. 1480–1489, 2024.

577 [6] T. Zhang, L. Li, Y. Wang, N. Zhang, S. Jiang, and A. Abu-Siada,
578 "Analysis of transformer oil-paper insulation state using fractional poynting-thomson
579 model," *IEEE Transactions on Dielectrics and Electrical Insulation*, vol. 29, no. 2, pp.
580 583–590, 2022.

581 [7] F. Yang, S. Ji, Y. Liu, and F. Zhang, "Research of sweep frequency
582 impedance to determine transformer winding deformation after short-
583 circuit impact," in *2016 IEEE International Power Modulator and High
584 Voltage Conference (IPMHC)*, 2016, pp. 68–72.

585 [8] V. A. Lavrinovich and A. V. Mytnikov, "Development of pulsed method
586 for diagnostics of transformer windings based on short probe impulse,"
587 *IEEE Transactions on Dielectrics and Electrical Insulation*, vol. 22, no. 4, pp.
588 2041–2045, 2015.

589 [9] N. Hashemnia, A. Abu-Siada, and S. Islam, "Improved power trans-
590 former winding fault detection using fra diagnostics – part 1: axial dis-
591 placement simulation," *IEEE Transactions on Dielectrics and Electrical
592 Insulation*, vol. 22, no. 1, pp. 556–563, 2015.

593 [10] Y. Akhmetov, V. Nurmanova, M. Bagheri, A. Zollanvari, and G. B.
594 Gharehpetian, "A bootstrapping solution for effective interpretation
595 of transformer winding frequency response," *IEEE Transactions on
596 Instrumentation and Measurement*, vol. 71, pp. 1–11, 2022.

597 [11] N. Hashemnia, A. Abu-Siada, and S. Islam, "Improved power trans-
598 former winding fault detection using fra diagnostics – part 2: radial de-
599 formation simulation," *IEEE Transactions on Dielectrics and Electrical
600 Insulation*, vol. 22, no. 1, pp. 564–570, 2015.

601 [12] A. Moradzadeh, H. Moayyed, B. Mohammadi-Ivatloo, G. B. Ghareh-
602 petian, and A. P. Aguiar, "Turn-to-turn short circuit fault localization in
603 transformer winding via image processing and deep learning method,"
604 *IEEE Transactions on Industrial Informatics*, vol. 18, no. 7, pp. 4417–
605 4426, 2022.

606 [13] J. Liu, Z. Zhao, C. Tang, C. Yao, C. Li, and S. Islam, "Classifying
607 transformer winding deformation fault types and degrees using fra based
608 on support vector machine," *IEEE Access*, vol. 7, pp. 112494–112504,
609 2019.

610 [14] T. A. Papadopoulos, A. I. Chrysochos, A. I. Nousdilis, and G. K.
611 Papagiannis, "Simplified measurement-based black-box modeling of dis-
612 tribution transformers using transfer functions," *Electric Power Systems
613 Research*, vol. 121, pp. 77–88, 2015.

614 [15] M. F. Horvat, Z. Jurković, B. Jurišić, T. Župan, and B. Ćučić, "Black-box
615 power transformer winding model," in *2022 7th International Advanced
616 Research Workshop on Transformers (ARWtr)*, 2022, pp. 18–23.

617 [16] F. Ren, H. Zhang, Y. Liu, S. Ji, and Q. Li, "Ladder network synthesis
618 in wide frequency range for transformer winding from its driving-point
619 admittance data," *IEEE Transactions on Power Delivery*, vol. 37, no. 3,
620 pp. 1370–1379, 2022.

621 [17] R. Aghmasheh, V. Rashtchi, and E. Rahimpour, "Gray box modeling of
622 power transformer windings for transient studies," *IEEE Transactions
623 on Power Delivery*, vol. 32, no. 5, pp. 2350–2359, 2017.

624 [18] Z. Zhao, Y. Chen, Y. Yu, M. Han, C. Tang, and C. Yao, "Equivalent
625 broadband electrical circuit of synchronous machine winding for fre-
626 quency response analysis based on gray box model," *IEEE Transactions
627 on Energy Conversion*, vol. 36, no. 4, pp. 3512–3521, 2021.

628 [19] Y. Chen, X. Ji, and Z. Zhao, "Synchronous machine winding modeling
629 method based on broadband characteristics," *Applied Sciences*, vol. 11,
630 no. 10, 2021.

631 [20] A. Abu-Siada, M. I. Mosaad, D. Kim, and M. F. El-Naggar, "Estimating
632 power transformer high frequency model parameters using frequency
633 response analysis," *IEEE Transactions on Power Delivery*, vol. 35, no. 3,
634 pp. 1267–1277, 2020.

635 [21] "Power transformers-part 18: Measurement of frequency response. in-
636 ternational standard, iec 60076-18," 2012.

637 [22] "Ieee guide for the application and interpretation of frequency response
638 analysis for oil-immersed transformers," *IEEE Std C57.149-2012*, pp.
639 1–72, 2013.

640 [23] P. Picher, M. Lachman, P. Patel *et al.*, "Advances in the interpreta-
641 tion of transformer frequency response analysis (fra)," *Cigre Technical
642 brochure, Brochure*, vol. 812, 2020.

643 [24] M. M. Shabestary, A. J. Ghanizadeh, G. B. Gharehpetian, and M. Agha-
644 Mirsalim, "Ladder network parameters determination considering non-
645 dominant resonances of the transformer winding," *IEEE Transactions
646 on Power Delivery*, vol. 29, no. 1, pp. 108–117, 2014.

647 [25] X. Zhao, C. Yao, A. Abu-Siada, and R. Liao, "High frequency electric
648 circuit modeling for transformer frequency response analysis studies,"
649 *International Journal of Electrical Power Energy Systems*, vol. 111, pp.
650 351–368, 2019.

651 [26] Y. Chen, B. Qin, X. Liu, W. Wang, and Y. Liao, "Start-to-end modeling
652 and transmission efficiency optimization for a cyclotron-based proton
653 therapy beamline," *Nuclear Engineering and Technology*, vol. 56, no. 10,
654 pp. 4365–4374, 2024.

655 [27] D. Eriksson, P. I.-J. Chuang, S. Daulton, P. Xia, A. Shrivastava, A. Babu,
656 S. Zhao, A. Aly, G. Venkatesh, and M. Balandat, "Latency-aware neural
657 architecture search with multi-objective bayesian optimization," *arXiv
658 preprint arXiv:2106.11890*, 2021.

659 [28] D. Eriksson and M. Jankowiak, "High-dimensional bayesian optimiza-
660 tion with sparse axis-aligned subspaces," in *Uncertainty in Artificial
661 Intelligence*. PMLR, 2021, pp. 493–503.

662 [29] Y. Chen, Z. Zhao, Y. Yu, W. Wang, and C. Tang, "Understanding ifra
663 for detecting synchronous machine winding short circuit faults based on
664 image classification and smooth grad-cam++," *IEEE Sensors Journal*,
665 vol. 23, no. 3, pp. 2422–2432, 2023.

666 [30] Z. Zhao, C. Yao, C. Li, and S. Islam, "Detection of power transformer
667 winding deformation using improved fra based on binary morphology
668 and extreme point variation," *IEEE Transactions on Industrial Electronics*,
669 vol. 65, no. 4, pp. 3509–3519, 2018.

670 [31] Z. Zhao, C. Yao, X. Zhao, N. Hashemnia, and S. Islam, "Impact of
671 capacitive coupling circuit on online impulse frequency response of a
672 power transformer," *IEEE Transactions on Dielectrics and Electrical
673 Insulation*, vol. 23, no. 3, pp. 1285–1293, 2016.

674 [32] A. Abu-Siada, N. Hashemnia, S. Islam, and M. A. Masoum, "Un-
675 derstanding power transformer frequency response analysis signatures,"
676 *IEEE Electrical Insulation Magazine*, vol. 29, no. 3, pp. 48–56, 2013.